This WASA course unit [CM-W-WAS] describes the content and the organization of the lecture and practical course "Web Applications and Service-oriented Architecture" (WASA) provided by the research group Cooperation & Management (C&M, Prof. Abeck).

WASA1 (Bachelor): Current concepts of software development and architectures (including Behavior-Driven Development, Domain-Driven Design, Microservices, RESTful Webservices, 12 Factor App, CI/CD Build Pipelines, DevOps, Container-virtualized Infrastructures) as well as related standards and technologies (including HTTP, Java, JavaScript/TypeScript, Angular, Spring, GitLab-CI, Docker, Kubernetes, Prometheus) are introduced which are needed to develop advanced (i.e. microservice-based, IoT aware, cloud-native, mobile) web applications. The web applications stem from different domains (Healthcare, ConnectedCar) and includes concepts from the domain of Internet of Things.

WASA2 (Master): A compact summary of the concepts covered by WASA1 is provided. In WASA2, two advanced topics are focused: (i) API engineering and management and (ii) identity and access management. Both topics are highly relevant for the digitization strategy of companies. In the lecture, two leading products (MuleSoft, Okta) are introduced to illustrate how the topics are solved in IT practice.

Since the concepts presented in the lecture must be practically applied to really understand the concepts, the WASA lecture is only offered in a combination with the WASA practical course.

The WASA kick-off lecture will take place online

on Wednesday, 20th April 2022 at 9:45 am.

Each student who wants to take part in WASA and in the kick-off lecture should send an email to
cm.research@lists.kit.edu

to receive the web link to the web session which is made available for their personal use. Please do ONLY use your DEPSEUDONYMISED KIT student email address (see https://my.scc.kit.edu/shib/pseudonymisierung.php for further information). Thank you!

The lecture material is made available in English. During the lecture, the content is presented and discussed in German. The oral examination is conducted exclusively in German. All students write their practical/seminar thesis in English. Thesis templates are made available in LaTeX. Overleaf is used for the collaborative writing of the practical thesis.

C&M Cooperation & Management
KIT Karlsruhe Institute of Technology
WASA Web Applications and Service-oriented Architectures

[CM-W-WAS] Cooperation & Management: WASA INTRODUCTION. \sccfs.scc.kit.edu\OE\TM\VR\Mitglieder\2-2.WASA_lecture
The research work, carried out by C&M, can be divided into two main areas:

(Connected Car, Healthcare, Environmental) In these business domains, applications based on the concept of domain modeling and microservice architectures are developed. Relevant concepts applied in the microservice engineering approach include Behavior-Driven Development (BDD) and Domain-Driven Design (DDD). In addition to development (Dev), the operational aspects (Ops) are intensively taken into account. DevOps concerns the continuous integration (CI) and continuous deployment (CD) of microservice-based software systems into a container-virtualized (Docker/Kubernetes-based) cloud infrastructure.

(Microservice API Integration and Management, Identity and Access Management) API Engineering and Management can be seen as the bridge between the two C&M's research areas since its task is to integrate and manage (i.e., configure, monitor, control) the developed APIs. Identity and Access Management (IAM) is a highly relevant crosscutting concern appearing in every web application. An advanced approach is IAM as a Service (IAMaaS) by which the IAM functionality is provided in a cloud infrastructure.

BDD Behavior-Driven Development
CI/CD Continuous Integration / Continuous Deployment
DDD Domain-Driven Design
IAM Identity and Access Management
DevOps Development and Operations
The projects run in one or more of four different environments. In the research field "Microservice API Integration and Management", two environments have been built: (i) the academic environment "Domain-driven Microservice Engineering Approach" and (ii) the product-driven environment "MuleSoft's API-led Connectivity". The third environment "Okta's IAM as a Service Solution" is also product-driven and it belongs to the research field of Identity and Access Management (IAM).

(Domain-driven Microservice Engineering Approach) The approach consists of two development processes, a domain development process and an application development process. The result is a systemically engineered microservice-based application, such as the PredictiveCarMaintenance (PCM) which are based on a well-designed microservice architecture consisting of reusable, application-agnostic domain microservices and application-specific domain application microservices. The approach is described in detail in the course unit WEB APPLICATION DEVELOPMENT [CM-W-WEB].

(MuleSoft's API-led Connectivity) MuleSoft is a leading product in the area of Application Programming Interface (API) management. Its solution is based on an approach, called API-led connectivity, by which APIs are designed and integrated in a layered architecture. An introduction to API management can be found in the course unit API MANAGEMENT [CM-W-API] and a detailed description of the MuleSoft solution is provided by the course unit IPAAS MULESOFT [CM-W-IPA].

(Identity and Access Management) Okta is a leading product in the area of IAM, especially IAM as a Service (IAMaaS) based on a cloud service infrastructure. It provides solutions both for workforce identity (i.e., Enterprise IAM) and customer identity (i.e., Consumer IAM). An introduction to IAM can be found in the course unit IDENTITY AND ACCESS MANAGEMENT [CM-W-IDE] and a detailed description of the Okta solution is provided by the course unit OKTA IAM SOLUTION [CM-W-OKT].

(Internet of Things) One characteristic of advanced web applications, such as PCM, is their use of environmental information provided by sensors from things (e.g., the car or the motor of the car) of the Internet. The FROST Server from Fraunhofer IOSB which implements the Internet of Things (IoT) standard "SensorThings API" is used for this purpose.

API Application Programming Interface
CAM Clinics/AssetManagement
IAM Identity and Access Management
IAMaaS IAM as a Service
IoT Internet of Things
PCM PredictiveCarMaintenance

[CM-W-API] Cooperation & Management: API MANAGEMENT. WASA Course Unit. \sccfs.scc.kit.edu\OE\TM\VR\Mitglieder\2-2.WASA_Lecture2.Advanced_Course_Units
[CM-W-IDE] Cooperation & Management: IDENTITY AND ACCESS MANAGEMENT. WASA Course Unit. \sccfs.scc.kit.edu\OE\TM\VR\Mitglieder\2-2.WASA_Lecture2.Advanced_Course_Units
[CM-W-IPA] Cooperation & Management: IPAAS MULESOFT. WASA Course Unit. \sccfs.scc.kit.edu\OE\TM\VR\Mitglieder\2-2.WASA_Lecture3.IPaas_MuleSoft
[CM-W-OKT] Cooperation & Management: OKTA IAM SOLUTION. WASA Course Unit. \sccfs.scc.kit.edu\OE\TM\VR\Mitglieder\2-2.WASA_Lecture4.IAMaaS_Okt
[CM-W-WEB] Cooperation & Management: WEB APPLICATION DEVELOPMENT. WASA Course Unit. \sccfs.scc.kit.edu\OE\TM\VR\Mitglieder\2-2.WASA_Lecture1.Web_Application_Development
The cases study is realized based on (i) the existing microservice-based application PredictiveCarMaintenance (PCM), (ii) the Integrated Platform as a Service (iPaaS) MuleSoft, and (iii) the Internet and Access Management as a Service (IAMaaS) Okta. In this chapter, the MuleSoft-related part of the design and implementation of the case study is described.

1) The application PCM is introduced and described in detail in the course unit CONNECTED CAR [CM-W-CON].

2) An introduction to the MuleSoft architecture which is based on the API-led connectivity approach can be found in the IPAAS MULESOFT [CM-W-IPA].

3) The IAMaaS solution Okta is in the focus of the course unit [CM-W-IAM].

3) In the course unit [CM-W-OKT] the analysis, design, and implementation of the Okta-based IAM solution foreseen in the case study are described in detail.

API Application Programming Interface
IAM Identity and Access Management
IAMaaS IAM as a Service
iPaaS Integrated Platform AS A Service
PCM PredictiveCarMaintenance
WASA Web Application and Service-oriented Architecture

[CM-W-CON] Cooperation & Management: CONNECTED CAR, WASA Course Unit.
[CM-W-IAM] Cooperation & Management: IAMaaS OKTA, WASA Course Unit.
[CM-W-IPA] Cooperation & Management: IPAAS MULESOFT, WASA Course Unit.
[CM-W-OKT] Cooperation & Management: OKTA @ KIT, WASA Course Unit.
A case study is introduced by which three market-leading solutions, (i) the iPaaS solution MuleSoft, the (ii) IAMaaS solution Okta, and the IoT solution FROST-Server, are investigated [CM-G-Cas].

(<<browser>> PCMFrontend) The frontend displays the vehicle information provided by the Experience APIs VehicleUser and Garage.

(<<api gateway>> APIManager) The APIManager provides an overview of the deployed API as well as an API proxy.

(<<experience api>> E-VehicleUser) This Experience API provides the relevant monitoring information to a vehicle user.

(<<experience api>> E-Garage) The Experience API E-Garage provides the relevant maintenance information to a CSG employee.

(<<process api>> P-VehicleMonitoring) This API implements the API as it is defined by the application microservice VehicleMonitor from the application PCM.

(<<process api>> P-GarageProcessing) The API handles maintenance events and cost calculation.

(<<system api>> S-FleetManagement) The System API integrates the external system Salesforce, which assigns employees to vehicles.

(<<system api>> Vehicle) (<<microservice>> Vehicle) The microservice Vehicle based on the domain microservice Vehicle running in the IAI cluster is integrated into MuleSoft via the System API Vehicle.

(<<system api>> S-Garage) This API gathers information about the vehicle's maintenance appointments from an external MySQL database.

(<<system api>> S-SensingDevice) This API integrates the external system FrostServer, which provides sensor data of the vehicles.

(<<iamaas system>> Okta) In the case study, the Identity and Access Management (IAM) system Okta is used to authenticate the PCM users (employees/vehicle users, system administrators) and authorize access to the <<experience/process api>> VehicleMonitor.

IAM Identity and Access Management
IAMaaS IAM as a Service
IoT Internet of Things
iPaaS Integrated Platform as a Service
PCM PredictiveCarMaintenance

[CM-G-Cas] Cooperation & Management: CaseStudy. https://git.scc.kit.edu/cm-tm/cm-team/4-1.iccg/practicaltasks/1.casestudy
The acronym WASA stands for "Web Applications and Service-oriented Architectures". Four different types of WASA courses are offered: (i) lecture courses WASA1 and WASA2 (ii) practical courses WASA1 and WASA2 associated to the lecture courses (iii) proseminar course associated to WASA1 lecture course and seminar associated to WASA2 lecture course (iv) key qualification course (germ. Schlüsselqualifikation SQ).

(1) The lecture courses WASA1 and WASA2 each comprise 2 semester hours. A student who attends one of the lectures acquires 4 credit points (German: Leistungspunkt).

(2) The practical course and the proseminar/seminar run in parallel with the lecture course. The practical course counts 5 credit points meaning a workload of 150 hours and the proseminar and seminar count 3 credit points meaning a workload of 90 hours.

Remarks:
(i) If the number of WASA applications is high, those students are preferred who want to pass the practical course.
(ii) In the Wirtschaftsinformatik study programme the name of the module is "Microservice-basierte Web-Anwendungen".

(3) The examiners are Prof. Abeck and one of the C&M's PhDResearchers. Since the examination is in the lecture term, the students should have a good personal resource management in order to have enough time for the preparation of the examination.

SQ Schlüsselqualifikation (Key Qualification)
(1) (2) Besides the traditional (one-way) lecture part, each lecture event additionally consists of an interactive part which is shaped in a more dynamic way.

(2.1) (2.2) For each lecture event, the agenda is made available in [CM-G-WAS]. The content of the markdown file is in German since this is the language spoken in the WASA lecture.

The project team agenda is a markdown document by which the work of all project team members is coordinated.

1. The project team leader takes care that all team members contribute to the agenda of each project team meeting.
 1.1. For each project team a subgroup exists in the C&M GitLab. In the README file of the repository "Projektstreffen" the agendas of the project team meetings are collaboratively worked out.
 1.2. The project team meets for one hour every week. The day and time are defined by the project team members.
 1.3. That is why the agenda is worked out in German.

2. There are templates available for the practical thesis and the seminar thesis.

3. C&M-TEAMARBEIT is a document [CM-CMT] which describes how the members of the research team C&M efficiently work together.

(Screen dump on the right hand side) This is an excerpt of a GitLab document which provides an agenda draft of the project meetings.

\sccfs.scc.kit.edu\OE\TMVR\Mitglieder\1-1.Teamarbeit
On the next pages, the following thesis offers are described in more detail:

(P1.iPaaSEngineering) Engineering of Applications on a Cloud-based Integration Platform

(P4.DevOpsAPILifecycle) Adaption of a Template-based DevOps Concept to the Lifecycle Management of APIs
Engineering von Anwendungen auf einer cloudbasierten Integrationsplattform

Betreuer: Sebastian Abeck, Michael Schneider, Niklas Sänger (C&M)
Jan Meyer zu Holte (iC Consult)
Einsatz und Erweiterung von Konzepten der Softwarequalitätsmessung und des Testens für Microservice-basierte Anwendungen

Betreuer: Sebastian Abeck, Michael Schneider (C&M)
Stephanie Zieschinski (xdi360)
Entwicklung von Sicherheits-Policies für Microservice-basierte Anwendungen

Betreuer:
Sebastian Abeck, Michael Schneider, Niklas Sänger (C&M)
Seyedamir Zolfaghari (iC Consult)
Anpassung eines Template-basierten DevOps-Konzepts auf das Lebenszyklus-Management von APIs

[Betreuung] Sebastian Abeck, Niklas Sänger (C&M)
Stefan Throner (Service Layers), Jan Meyer zu Holte (iC Consult)
This page summarizes all relevant dates that are relevant for each participant of the practical course offered in combination with the WASA lecture.

(1) It is absolutely necessary that a student has a free slot in his/her personal time table in order to be able to take part in these weekly meetings. The meetings start in the next week (i.e., the second week of the lecture period).

(2) The content produced for the presentation should conform to the WASA course material.

(3) This day is the Friday of the last lecture week. The whole Friday (i.e., 12 pm) is available to finish the documentation.
Next Steps

(1) Personal decision if you want to participate in the WASA lecture and an accompanying practical/seminar course

(2) If YES

(a) Latest until Thursday, 21.04.2022, 10 am: Send an email with your depseudonymized KIT mail address to cm.research@lists.kit.edu with the following information:
 (1) Prename, surname, matriculation number, KIT account (uxxxx), interest in practical course (preferred) or (pro)seminar course or both
 (2) Personal motivation and experiences in this area (e.g., IT project experiences)
 (3) 2 to 4 projects (P1 to P4) of interest (highest priority first)

(b) The answer to your email will contain all relevant information (esp. access to document storage and C&M GitLab, date of kickoff meeting, first work packages) to start the lecture and the practical/seminar course

(3) This email will be sent by the project team leads.

The current lecture material is stored on the C&M Teamserver in the following folder:
https://team.kit.edu/sites/cm-tm/Mitglieder/2-0.Aktuelles_Semester

(1) It is absolutely important that a student who participates in the WASA lecture and practical/seminar course has the necessary resources to cope with the workload (lecture: 120 hours, practical course: 150 hours).

(2.1) Check on the page of the KIT Steinbuch Computing Centre if your email is already depseudonymized.

(2.1.2) The motivation and the experiences should be summarized in at least one or two paragraphs.

(2.1.3) This means that the first project team in the list is your favorite team.
The C&M Teamserver is described in detail in the document C&M-TEAMARBEIT (in German) which is available
(i) on the C&M web site: https://cm.tm.kit.edu/
(ii) on the C&M Teamserver: \sccfs.scc.kit.edu\OE\TM\VR\Mitglieder\1-1.Teamarbeit
This function can be found in the Studierendeportal by clicking on "Meine Benutzerdaten" > "De-/Pseudonymisierung" and accepting "Ich stimme der Sichtbarkeit meiner namensbezogenen Daten zu". The name-related E-Mail-Adresse <prename><surname>@student.kit.edu" exists additionally to the "uxxx@student.kit.edu" email address.