
Enabling IoT Platform Interoperability Using a
Systematic Development Approach by Example

Michael Schneider, Benjamin Hippchen, Sebastian Abeck
Research Group Cooperation & Management

Karlsruhe Institute of Technology (KIT)
Zirkel 2, 76131 Karlsruhe, Germany

(michael.schneider | benjamin.hippchen | abeck)@kit.edu

Michael Jacoby, Reinhard Herzog
Department Information Management and Production Control

Fraunhofer IOSB
Fraunhoferstr. 1, 76131 Karlsruhe, Germany

(michael.jacoby | reinhard.herzog)@iosb.fraunhofer.de

Abstract—Today, the IoT landscape consists of a large number
of vertical IoT platforms that are rarely interconnected. To
enable creation of applications across platforms and domain
boundaries interoperability needs to be established between IoT
platforms. In this paper we present how this task can be
simplified by utilizing a systematic software development process
based on behavior- and domain-driven development. This process
is illustrated using an example that uses the open source IoT
interoperability framework symbIoTe to connect two indoor
navigation platforms. We show that developers can actually profit
from this approach but existing IoT interoperability frameworks
are still cumbersome to use.

Keywords-Internet of Things, IoT, interoperability, semantic
interoperability, behavior-driven development, domain-driven de-
sign

I. INTRODUCTION

The landscape of Internet of Things (IoT) platforms is con-
stantly growing. Most of these platforms are highly specialized
on a specific domain or even an application. This results in the
IoT landscape being fragmented into many vertical IoT silos
that are rarely interconnected. However, the key feature of the
IoT is to interconnect things regardless of the way they are
physically connected which means that interoperability should
not only be possible within platforms but also across platforms.

To enable interoperability across IoT platforms multiple
levels of interoperability need to be addressed. The two most
important ones are technical interoperability and semantic in-
teroperability. Technical interoperability enables the exchange
of data. This is well addressed by existing communication
protocols and standards. Thus, it can be treated as more or
less solved. However, besides exchanging data the platforms
must also be able to understand it. The ability to understand
exchanged data is referred to as semantic interoperability.
Enabling semantic interoperability can be far more complex
than technical interoperability and is still an active area of
research.

In this paper, we present how the process of making two
existing IoT platforms interoperable using the open source
IoT interoperability framework symbIoTe can be simplified
by applying the software development approaches behavior-
driven development (BDD) and domain-driven design (DDD).

The remainder of this paper is structured as follows. Sec-
tion II provides background information on BDD, DDD and

the used symbIoTe framework as well as related work on
other IoT interoperability systems. Furthermore, the example
used throughout the paper is introduced in this section. Sec-
tion III and Section IV present how the software development
approaches and processes are applied to the example in the
analysis and the design phase. In Section V is shown how
(semantic) interoperability is implemented for our example
using the symbIoTe interoperability framework. The paper
closes with conclusions in Section VI.

II. BACKGROUND & RELATED WORK

A. Software Development Approaches

The development process we apply in our case study is
based on behavior-driven development (BDD) and domain-
driven design (DDD). Each of the two approaches covers a
different aspect of the application. One first step to merge both
approaches is given in [1]. The authors classify them into a
widely accepted software engineering approach from Brügge
et al. [2].

BDD could be seen as a further development of test-
driven development (TDD) [3]. TDD tries to determine the
correctness of an application with executable acceptance tests,
which are written in the chosen programming language [4].
This is the first difference to BDD, which specifies the accep-
tance tests in the business readable, domain specific language
Gherkin [3]. Gherkin uses the common speech and predefined
keywords for defining its features. This allows practitioners of
BDD to create features directly with the customer, as they are
“understood by everyone” [3]. Furthermore, the philosophy of
BDD is progressing the application from the outside to the
inside [3]. The most visible functionality is first specified as a
feature and then implemented directly. During the implemen-
tation, new functions are discovered, defined as features and
implemented. North characterizes this approach as “code-by-
example” [5].

According to Evans, the main reason why applications
do not meet the customer’s expectations and needs is the
lack of the developers knowledge of the customer’s domain
[6]. To address this problem, Evans introduced the DDD
approach with various patterns and principals in his book
“Domain-Driven Design: Tackling Complexity in the Heart
of Software”. With DDD, the customer’s domain is analysed

and the results, the so-called domain knowledge, are stated in
a domain model. By establishing a “ubiquitous language”, the
development team and the customer speak the same language.
An essential principal of DDD is that the source code of the
application reflects the structure of the domain model.

B. symbIoTe

symbIoTe (symbiosis of smart objects across IoT
environments) [7] is an H2020 EU project and provides
an open source interoperability framework for collaboration
and federation of IoT platforms. It provides interoperability
on four so-called interoperability levels (L1-L4): syntactic
and semantic interoperability (L1), platform federations
(L2), dynamic smart spaces (L3) and roaming devices (L4).
In our example we are going to make the platforms only
L1-compliant as L1 already covers our needs (syntactic
and semantic interoperability). Figure 1 shows a high-level

User

symbIoTe Core
Search

Interworking
Interface

Interworking
Interface

search for resources
access

resources
access

resources

IoT Platform A IoT Platform B

Registry

register

 platform
 resources
 information model
 semantic mapping

(1)

(2)(3)

Fig. 1. High-level overview of symbIoTe L1 functionality.

overview of symbIoTe’s L1 functionality. The two major
building blocks are the symbIoTe Core (depicted in grey) and
the Interworking Interface (depicted in orange). The Core
acts as an IoT search engine where platforms can register
their resources (1) and users (meaning users of symbIoTe,
e.g. mobile apps, websites, IoT platforms, backend services,
etc. rather than end-users) can search for these resources (2).
The resource access (3) is done directly between user and
platform so that platforms can maintain complete control over
their data.

The Interworking Interface defines a uniform API for re-
source access, authentication and authorization across plat-
forms and has to be implemented by each platform. In the
following, we present how syntactic and semantic interoper-
ability are achieved in symbIoTe.

Syntactic interoperability is about exchanging data. In sym-
bIoTe, syntactic interoperability is achieved by requiring all
platforms to implement the Interworking Interface as a com-
mon API for resource access.

Semantic interoperability is about understanding the ex-
changed data. Three different types of semantic interoperabil-

ity can be identified: (semantic) interoperability by chance, by
standardization and by mapping. Interoperability by chance
means that an interoperability framework allows the usage of
any information model and the platforms are only interop-
erable if they, by chance, use the same one. This would be
comparable to an API where each parameter and return value
is defined as a set of key-value-pairs but the possible values
for the keys are not defined. In this case, everybody could
use the API but nobody would know exactly how to use it to
be interoperable to other implementations. Interoperability by
standardization means that there is exactly one agreed-upon
or standardized information model that all platforms must
use. This is currently the default for API definitions. Almost
all existing interoperability frameworks and systems support
either one or both of these types of semantic interoperability.
However, in the highly diverse and dynamic environment of
IoT this only works within some scenarios but not as a general
way to enable interoperability between any IoT platform.

The most powerful type of semantic interoperability is
called interoperability by mapping and allows different plat-
forms to use different information models. Semantic interoper-
ability between the platforms is established only by semantic
mappings between their information models. However, this
comes at the price that the mappings have to be defined and
data has to be translated between the different models.

According to [8], there are multiple possible approaches
on how to achieve semantic interoperability. symbIoTe uses
the approach called Core Information Model with Extensions,
which supports all three types of semantic interoperability.

In symbIoTe, each platform can describe the resources
it offers using its own information model called Platform-
Specific Information Model (PIM). However, this model can-
not be chosen completely freely by the platform but must
be an extension of the Core Information Model (CIM) that
is defined by symbIoTe shared between all platforms. The
CIM is designed to be as explicit as needed to ensure a
minimal level of out-of-the-box interoperability, but at the
same time to be as minimalistic and abstract as possible giving
platforms the freedom to adapt it to their needs. For example,
the CIM defines abstract classes like Sensor, Actuator, Service
or Location with minimal properties like id and name. When
a platform needs a more sophisticated class hierarchy or
additional properties it can define them in its PIM.

This approach supports all three types of semantic inter-
operability. Interoperability by standardization is supported as
all platform share the CIM as smallest denominator ensuring
some minimal interoperability between all platforms out-of-
the-box (i.e. without having to define semantic mappings).
Furthermore, platforms can agree to use the same (standard-
ized) PIM which makes them interoperable without doing
anything further not only regarding the CIM but the whole
shared PIM. If they use the same PIM by chance, e.g. because
it is best practice or de-facto standard in their domain, they
also gain full semantic interoperability in terms of that PIM.
Additionally, semantic interoperability by mapping will also
be supported by symbIoTe. For this to work, symbIoTe needs

formally defined mapping definitions describing how two
PIMs relate to each other.

These mapping are used in multiple ways within symbIoTe.
First, a platform can store mappings between its PIM and
other PIMs in the symbIoTe Core. This way, they are available
to the Core, which will utilize them to do query re-writing
which allows finding resources across different mapped PIMs.
Additionally, the symbIoTe client library will utilize them for
data translation, allowing to access data from another platform
in a (PIM-) transparent way. This means, that one platform can
access another platform as if it would use the same PIM as
long as there is mapping between both PIMs registered in the
Core.

At the time of writing, semantic mapping functionality in
symbIoTe is still under development. Details on the devel-
opment status of semantic mapping and the definition of the
mappings are presented in Section V.

C. Other IoT interoperability frameworks

There are a lot of research groups and standards addressing
the problem of cross-platform interoperability in the IoT
context. These are for example the IRTF Thing-to-Thing
Resource Group (T2TRG), W3C Web of Things Working
Group (WoT), SensorThingsAPI from the Open Geospatial
Consortium (OGC), iot-schema.org, oneM2M and many more.
However, these activities are more fundamental whereas we
will focus on more hands-on projects that are either available
right now or are expected to be available soon.

Therefore, in this section we will present three projects,
which are part of the IoT-European Platforms Initiative
(IoT-EPI), all addressing the problem of IoT platform
interoperability. IoT-EPI is a European initiative bringing
together seven EU-funded research and innovation projects
(including symbIoTe) in the area of IoT platform development.

BIG IoT
Main objective of the BIG IoT project [9] (Bridging the
Interoperability Gap of the IoT) is to create an open
marketplace for IoT platforms and services. The marketplace
concept of BIG IoT is very similar to the symbIoTe Core
and also the whole processing of making a platform (L1-)
compliant to the system as well as registering and searching
resources. BIG IoT uses the W3C WoT ThingDescription to
semantically describe resources and allows the usage of any
information model. However, they do not provide any support
to enable interoperability between platforms using different
information models.

bIoTope
The bIoTope project [10] (Building an IoT Open Innovation
Ecosystem For Connected Smart Objects) addresses
interoperability with a Systems-of-Systems approach.
Everything (e.g. apps, devices, platforms, gateways, non-IoT
application and services) has to have a wrapper that exposes
the resource’s data through the Open Message Interface
(O-MI) using the Open Data Format (O-DF). Just like BIG

IoT, bIoTope allows the use of any information model but
does not provide any tool support for establishing semantic
interoperability.

INTER-IoT
The INTER-IoT project [11] (Interoperability of
heterogeneous IoT platforms) addresses interoperability
on five levels; device, network, middleware, application and
data, and semantics. Besides symbIoTe, INTER-IoT is the
only project in the IoT-EPI explicitly addressing semantic
mapping and providing a tool set to make use of these
mappings. However, in INTER-IoT, semantic mapping is
not done directly between two different platform-specific
information models but always from a platform-specific
information model to a common, shared model [12].

D. Introduction of the Example

Figure 2 shows a schematic representation of the compo-
nents and their deployment of the running example. The initial
position is: there are two existing IoT platforms, Platform
Campus A and Platform Campus B, one deployed at the KIT,
the other at Fraunhofer IOSB premises and both providing a
mobile app supporting their offered services. The goal is to
enable interoperability between the platforms so that users of
Campus A can use their existing application (e.g. for searching
a room) for the same intention when visiting Campus B. In this
case, the application of Campus A requires data (including IoT
data, such as the current location of the user) of Campus B.
However, as the two platforms may use different information
models (called PIMs in symbIoTe) the exchanged data might
not be understood by the application. Therefore, the data
needs to be provided in a way so that the corresponding
application can process the data. A transformation of the
information model (like schematic mapping) is needed. This
transformation is done by a component of the adapter, as
shown in Figure 2. To establish the connection to symbIoTe,
Campus A and Campus B have to implement the symbIoTe
adapter. For accessing resources from Campus B, the resource
access proxy (RAP) of Campus B must be known. This adapter
offers the required data from Campus B. Therefore, the adapter
registers the platform and provides the information model
in the so-called resource description format (RDF) [13] to
symbIoTe Core. Afterwards, the resources from Campus B can
be searched and found in the Core and are accessible via the
interworking interface. The Interworking Interface is REST-
based [14]. The backend of Campus B provides the needed
data through a plug-in that communicates with the RAP. The
data that Campus A requested from Campus B is received by
the symbIoTe client (which is part of the adapter) of Campus
A. In this stage, the received data is semantically mapped for
the needs of the backend that Campus A provides for their
application. On the left side, Campus A has to implement the
necessary adapter for enabling symbIoTe. On the right side,
Campus B also needs a connection to symbIoTe and has to
implement an adapter as well. One challenge of the semantic
mapping is that the domains of Campus A and Campus B are

Platform Campus A (@KIT) Platform Campus B (@IOSB)

symbIoTe Core

Search

Registry

Show Location

Room 001

Room 007

Backend

App of
Campus A

symbIoTe
Adapter

symbIoTe
Client

Semantic
Mapping

RAP
RAP

Plugin

PIM
In

te
rw

o
rk

in
g

In
te

rf
ac

e

symbIoTe
Adapter

symbIoTe
Client

Semantic
Mapping

RAP
RAP

Plugin

PIM

In
te

rw
o

rk
in

g
In

te
rf

ac
e

DB

Backend

DB

Show Location

Room ABC

Room XYZ

App of
Campus B

Dataflow without symbIoTe
Additional dataflow after integrating symbIoTe
Implementation provided by symbIoTe framework

Fig. 2. Schematic representation of components and their deployment for
the example use case including the data flow with and without symbIoTe.

not the same. Campus A provides a beacon-based navigation
service while Campus B offers a room reservation service.
The consequence is that the information models are not the
same. However, the models have several overlaps that can
be utilized for the application, e.g. both are determining the
current location.

III. ANALYSIS PHASE: FEATURE DESCRIPTION

As a member of Campus A I want to use my application
to show my current location on Campus B. This is an im-
portant requirement in terms of interoperability the desired
application has to fulfil. In order to create a cross-domain
application, it is necessary to discuss the need of the inter-
operability as a requirement. To address this need behavior-
driven development is used for analysing and specifying the
requirements. Therefore, the requirements are specified as
features. This is the first part of the systematic development
process. Figure 3 shows the feature that describes the desired
goal of the application. A BDD template is used to specify

1. Feature: Show my location on Campus B
2. As a member of Campus A
3. I want to use my well−known application
4. In order to determine my current location on Campus B

5. Scenario: Show my location on Campus B
6. Given I am at Campus B
7. And a beacon from Campus B is available
8. When I open the ‘‘Current Location’’ page
9. Then my current location on Campus B should be displayed

Fig. 3. Campus Interoperability Feature

the feature shown in Figure 3. It consists of two parts; a
feature description part [15] describing the business value of
the feature and a scenario description part [3], which is written
in natural language. An advantage of the scenarios is that
developers can easily understand and discuss the specified
features with the stakeholders. The scenarios describe how
the application works. In addition, scenarios describe the
acceptance criteria of a feature that allows the automated
testing of the requirement. In order to test the feature shown
in Figure 3, the step definitions have to be implemented.
Before the written tests can pass, the functionality has to be
implemented. To be able to test the feature shown in Figure
3, there must be a connection to symbIoTe. Line 7 of the
scenario given in Figure 3 makes it clear that a beacon from
Campus B must be available. This step delivers an important
hint. Without a connection to symbIoTe, the test cannot pass
because the needed data cannot be acquired from Campus B.
Thus, the systematic development approach delivers important
clues for the developers in terms of interoperability and the
developer knows what needs to be implemented. Features also
contain scenarios that cover errors that may occur. Therefore,
the features provide important clues for the developers in order
to allow cross-domain communication. To test a feature even
further, each feature contains more than one scenario. The set
of scenarios of a feature should also contain scenarios that
describe what happens in an error situation.

In addition to the features which concern the cross-domain
integration, there is also a need for features that describe
the functionality of the application. These features are speci-
fied according to the features concerning interoperability. For
example, the navigation application needs to determine the
current position of a user and the location of the user inside
a building should be displayed. The terms used in the feature
description, provide important domain knowledge and have
an influence on the domain model. Therefore, the specified
features function as input for the modelling phase.

IV. DESIGN PHASE: MODELLING AND INTEGRATION OF
THE MODELS

To enable semantic interoperability each platform needs to
provide a formally defined model of the domain. In case of
Campus A where we applied BDD and DDD, we automat-
ically get this model as part of the systematic development
process. For Campus B, the model was created manually based
on existing class diagrams. In this section, we first introduce
the two different models and then analyse their differences and
how they can be aligned. Please note that the models have been
simplified to better illustrate the example.

A. Model of Campus A

The creation of the domain model from Campus A is based
on the features. A feature specifies parts of the business logic
from the viewpoint of a user. In addition, each feature specifies
parts of the application logic of the software system. A part
of the business logic is the domain logic, which is application
agnostic. Therefore, a feature contains relevant information

about the domain, which is relevant for understanding the
domain. The approach to understand the domain and the
functionality related to the domain is achieved by reading
every line of the feature and its scenarios and identifying the
presumably relevant terms. Each relevant term becomes a part
of the ubiquitous language, an important concept of DDD [6].
With each analysed feature, additional and relevant terms are
identified. For example, the feature shown in Figure 3 led to
the terms location and building. In addition, the relationships
between the terms can be derived from the feature, e.g. a
beacon is at a location. Further features, knowledge crunching,
and more insight extend the domain model to the resulting
model, as shown in Figure 4.

1

1

1..*

3..*

Office

Library

SeminarRoom

AirConditioning

StudentUnion

SanitaryFacility

Hallway

Wallplugs

Ethernet

SeatingCap

LectureHall

2..*

Helpdesk

Computer

Beamer

ATM

Door

Elevator

Stairs

Beacon

UUID: String
Major: Integer
Minor: Integer
Description: String

Portal

Description: String
PassingPriority: Integer

PortalGate

Location

Location: Double

PointOfInterest

Name: String
Description: String

PortalGates 1..*

Location 1
*

Location

1 *
Location 1

*

Building

Name: String

Floor

Name: String

Feature

0..*

1

Features

*

Floor

1

Floors

Vertices

Areas Gates

*

*

capacity: Integer

Area

Name: String
Description: String
RoomNumber: String
SmartCampusLink: URL

Fig. 4. Domain Model of Campus A

The excerpt from the domain model of the navigation
platform describes the relations between the domain objects.
The main concept of the model is the Area. Three or more
Locations define the vertices of an Area. Each Floor is divided
into several Areas while a Floor is part of a Building. An Area
can be a specific type like Hallway or Office. For navigation
purposes, each Area has at least one PortalGate at a specific
Location. Two or more PortalGates are connected by a Portal.
To determine the position of a user, beacons are placed at a
specific Location in an Area. For this purpose, it is necessary
to distinguish the beacons. Therefore, each beacon has a
universally unique identifier (UUID) which is displayed as
attribute in the model.

B. Model of Campus B
Figure 5 depicts the domain model of Campus B using the

EduCampus platform. The main concepts are BleBeacons that
are attached to a Thing and BeaconDetection which represents
events generated when a User was close to a beacon at a
certain date and time. Users can also create Reservations for a
room and time interval, including Catering Requests. A Thing
can be either a Room or a MoveableThing, e.g. inventory.
A Room has the properties capacity and roomNo, can have
multiple Features like a projector or a whiteboard and can
contain multiple Workspaces.

C. Differences and Integration of the models
Although both models cover more or less the same domain,

they have quite different views of it. This is caused by different

Thing

name: String
description: String

BleBeacon

beaconId: String
major: Integer
minor: Integer

BeaconDetection

datetime: DateTime

User

MoveableThing

<<enumeration>>

Feature
DockingStation
Projector
Whiteboard
AirConditioning

Workspace

Reservation

start: DateTime
end: DateTime

CateringRequest

Room

capacity: Integer
roomNo: String

*features

*

workspaces *
room 1

catering
Requests reservation

* 1

reservations

*

createdBy

1

detectedBy 1

*

beacon 1

*

attached

0..1 *

room 1

reservations *

Fig. 5. Domain Model of Campus B.

needs of the existing applications resulting in different levels
of detail of the model and by design decisions like using ray
tracing or nearest-neighbour for location. However, they both
provide information about areas/rooms and the functionality to
identify the position of a user based on the beacons in range.
To share this functionality between the platforms, both expose
a service called getPosition taking some beacon information
as input and returning the position. However, they use the
corresponding classes of their domain model to describe the
input and return type. Therefore, the service definition for
Campus A is getPosition(Beacon[]) → Area and
for Campus B getPosition(BleBeacon[]) → Room.
This reduces the problem of semantic interoperability to
mapping the concepts Area and Room as well as Beacon and
BleBeacon. This mapping has to include all the properties and
references of these concepts that are present in both models.

Mapping Beacon and BleBeacon is straightforward by re-
naming the shared properties (UUID ↔ beaconId, Major ↔
major, Minor ↔ minor) and dropping the optional property
Description. To map Area and Room we start again with
renaming the shared properties Name ↔ name, Description
↔ description and RoomNumber ↔ roomNo. The rest of the
mapping, covering features of an area/room and the seating
capacity, is more complex as it involves relations between
objects. If an Area has a Feature of type SeatingCap we map
its property capacity to the property capacity of Room and
the other way round. Further, we map the only shared type
of feature from an instance in the model of Campus A to the
corresponding enumeration value in the model of Campus B.

V. IMPLEMENTATION PHASE: CURRENT STATE

To become symbIoTe L1-compliant a platform has to im-
plement the Interworking Interface. To ease the development
process, symbIoTe already provides a microservice-based Java
implementation of the Interworking Interface that only needs
to be slightly adapted to the platform1. The PIM needed for
registration of the platform to the Core can be extracted easily
from the domain model, which we created through the design
phase of the systematic development process. Creating an
RDF/OLW2-based ontology of the PIM, which is required by
symbIoTe, is now only a matter of minutes.

1https://github.com/symbiote-h2020/SymbioteCloud

To enable interoperability across the two different PIMs we
need to define a semantic mapping. In symbIoTe, semantic
mappings are defined using a proprietary domain specific
language. They consist of an optional set of prefix declarations,
an optional set of transformation definitions (allowing to define
transformation functions in JavaScript) and some mapping
rules. Figure 6 shows an example mapping definition with
some prefix definitions and a single rule. Currently, these
mappings have to be defined manually by a domain expert.
However, to ease usability, they should be (partially) auto-
generated in the future based on existing algorithms for
ontology matching.

1. BASE <http://iosb.fraunhofer.de/ilt/ontologies/educampus#>
2. PREFIX kit: <http://cm.kit.edu/SmartCampus/DomainModel#>
3. PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

4. RULE
5. CONDITION
6. CLASS :Room
7. :name TYPE xsd:string
8. AND :description TYPE xsd:string
9. AND :roomNo TYPE xsd:string

10. AND :capacity TYPE xsd:integer
11. PRODUCTION
12. CLASS kit:Area
13. kit:Name VALUE REFERENCE :name
14. AND kit:Description VALUE REFERENCE :description
15. AND kit:RoomNumber VALUE REFERENCE :roomNo
16. AND kit:hasFeature TYPE CLASS kit:SeatingCap
17. kit:capacity VALUE REFERENCE :capacity

Fig. 6. Example semantic mapping definition.

It is to notice, that semantic mapping is still an active
research area. Nevertheless, symbIoTe is trying to progress the
state-of-the-art by providing a proof-of-concept implementa-
tion covering query translation and data transformation based
on mappings. At the time of writing, the semantic mapping
functionality in symbIoTe is still under development2. The
basic functionality – mapping language including parser, query
re-writing and data transformation – is working but not yet
integrated into the Core and the symbIoTe client library.

It is planned to release a finished version in July 2018.

VI. CONCLUSION

In this paper, we presented a real-life example of how to
establish interoperability between two IoT platforms dealing
with BLE-based indoor localization. We used symbIoTe as an
open source IoT interoperability framework and showed that
using a systematic software development based on BDD and
DDD is helpful in this process. This is because semantic inter-
operability is a very tough problem (besides when standard-
ization is used) and BDD and DDD implicitly output a domain
model, which is needed to achieve semantic interoperability.
This is a major advantage of using this kind of systematic
software development process in such scenarios because a
formally defined information model is always needed when
trying to establish semantic interoperability and surprisingly
very few IoT platforms already provide this. Furthermore, lots

2https://github.com/symbiote-h2020/SemanticMapping/tree/develop

of IoT platform providers and owners seem to have trouble
when being asked to create such a model.

IoT interoperability is a growing area of research and will
even grow faster in the future as the number of internet-
connected devices keeps increasing. Even though it is cur-
rently addressed by multiple research projects as described in
Section II-C, further research and standardization is needed to
provide easy-to-use interoperability libraries and frameworks
to be used by non-expert programmers.

ACKNOWLEDGMENT

This work is supported by the H2020 symbIoTe project,
which has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under grant
agreement No 688156.

REFERENCES

[1] B. Hippchen, P. Giessler, R. Steinegger, M. Schneider, and S. Abeck,
“Designing microservice-based applications by using a domain-driven
design approach,” in International Journal on Advances in Software.
IARIA, 2017, pp. 432–445.

[2] B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering
Using UML, Patterns and Java-(Required). Prentice Hall, 2004.

[3] M. Wynne, A. Hellesoy, and S. Tooke, The cucumber book: behaviour-
driven development for testers and developers. Pragmatic Bookshelf,
2017.

[4] K. Beck, Test-Driven Development: By Example. Addison-Wesley
Professional, 2003.

[5] D. North. (2009) BDD & DDD. QCon London 2009. URL: https://www.
infoq.com/presentations/bdd-and-ddd [retrieved: 2017.11.30].

[6] E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley Professional, 2004.

[7] S. Soursos, I. P. Žarko, P. Zwickl, I. Gojmerac, G. Bianchi, and G. Car-
rozzo, “Towards the cross-domain interoperability of iot platforms,” in
2016 European Conference on Networks and Communications, 2016.

[8] M. Jacoby, A. Antonić, K. Kreiner, R. Łapacz, and J. Pielorz, “Semantic
interoperability as key to iot platform federation,” in International
Workshop on Interoperability and Open-Source Solutions. Springer,
2016, pp. 3–19.

[9] A. Bröring, S. Schmid, C.-K. Schindhelm, A. Khelil, S. Käbisch,
D. Kramer, D. Le Phuoc, J. Mitic, D. Anicic, and E. Teniente, “En-
abling iot ecosystems through platform interoperability,” IEEE software,
vol. 34, no. 1, pp. 54–61, 2017.

[10] bIoTope project. [Online]. Available: http://www.biotope-project.eu/
[11] G. Fortino, C. Savaglio, C. E. Palau, J. S. de Puga, M. Ganzha,

M. Paprzycki, M. Montesinos, A. Liotta, and M. Llop, “Towards
multi-layer interoperability of heterogeneous iot platforms: The inter-
iot approach,” in Integration, Interconnection, and Interoperability of
IoT Systems. Springer, 2018, pp. 199–232.

[12] M. Ganzha, M. Paprzycki, W. Pawłowski, P. Szmeja, and
K. Wasielewska, “Towards semantic interoperability between internet of
things platforms,” in Integration, Interconnection, and Interoperability
of IoT Systems. Springer, 2018, pp. 103–127.

[13] O. Lassila, R. R. Swick et al., “Resource description framework (rdf)
model and syntax specification,” W3C, 1998.

[14] R. T. Fielding, “Rest: architectural styles and the design of network-
based software architectures,” Doctoral dissertation, University of Cal-
ifornia, 2000.

[15] D. North et al., “What’s in a story,” 2016. [Online]. Available:
https://dannorth.net/whats-in-a-story/

