
 05/2018� Schwerpunkt: Skalierbare Architekturen

2

Für das Verständnis ist es notwendig, zu-
nächst die grundlegenden Konzepte zu er-
läutern, auf die sich dieser Artikel stützt.
Aus diesem Grund erläutert Kasten 1 zu-
nächst die Begrifflichkeiten Microservice
und Microservice-Architektur, im An-
schluss fassen wir die notwendigen Kon-
zepte von Domain-Driven Design kurz
zusammen.

Zentrale Konzepte des
Domain-Driven Design (DDD)

Bei der Betrachtung komplexer Pro
blemstellungen, die das zu entwickelnde
Anwendungssystem lösen soll, bedarf
es einem tief gehenden Verständnis der
Fachdomäne des Kunden (im Folgenden
nur noch Domäne). Ohne dieses ist eine

optimale Unterstützung der Geschäfts-
prozesse des Unternehmens durch das
Anwendungssystem nicht gewährleistet.
Ein Ansatz zur Auflösung dieser Prob-
lematik ist das Domain-Driven Design
(DDD) von Eric Evans aus dem Jahr 2003
[Eva03, Ver13, Mil15]. Bei DDD handelt
es sich in erster Linie um eine Ansamm-
lung verschiedener Konzepte, welche uns
bei dem Entwurf der Domäne unterstüt-
zen. Das zentrale Konzept von DDD ist
das Formalisieren der Erkenntnisse über
die Domäne, das Domänenwissen, in ei-
nem Domänenmodell. Semantisch und
syntaktisch lässt DDD freien Spielraum,
was die Gestaltung des Domänenmodells
angeht; jede Form der Präsentation von
Domänenwissen ist erwünscht, solange
das Verständnis der Domäne gefördert

wird. Prinzipiell sind jedoch in das Do-
mänenwissen nur die für das Anwen-
dungssystem relevanten Geschäftsobjekte
aufzunehmen, die im Domänenmodell als
Domänenobjekte bezeichnet werden. Es
erfolgt also keine allgemeine Analyse der
Domäne.
Das für ein Anwendungssystem erstellte
Domänenwissen wird bei der Entwick-
lung eines nachfolgenden (in der gleichen
Domäne angesiedelten) Anwendungssys-
tems genutzt und entsprechend erweitert.
Das Ergebnis ist ein Domänenmodell, das
die Basis der zu der Domäne beitragenden
Anwendungssysteme darstellt. Diese Basis
besteht auf der Architekturebene aus den
Microservices, die in unterschiedlichen
Anwendungskontexten wiederverwendet
werden. Zu jeder Entwicklungsphase des
Anwendungssystems sieht DDD den Kon-
takt zu den Verantwortlichen aufseiten
des Unternehmens vor, welche die Domä-

Nachhaltige und flexible Softwareentwicklung
Wiederverwendbare Microservices
durch Domain-Driven Design
Heutzutage sollten Anwendungssysteme so gestaltet sein, dass sie sich möglichst schnell an neue Anforderungen
anpassen lassen. Da hohe Wirtschaftlichkeit und Flexibilität erstrebenswert sind, setzen Unternehmen zunehmend
auf sogenannte Microservice-Architekturen, welche die Anforderungen durch feingranulare und autonome Micro-
services erfüllen. Der Entwurf der Microservices hat einen erheblichen Einfluss auf die letztliche Wiederverwend-
barkeit und Flexibilität eines Anwendungssystems. Dabei sind allerdings zahlreiche Entwurfsentscheidungen zu
treffen, die sich auf die Qualität des Anwendungssystems auswirken. Der Ansatz des Domain-Driven Design liefert
interessante Konzepte für den Entwurf von Microservices und der daraus ableitbaren Architektur.

Microservice und
Microservice-Architekturen

■■ Microservice: Autonomer Service,
der einen minimalen Ausschnitt einer
Fachlichkeit mit hoher Kohäsion
abbildet und seine immaterielle
Dienstleistung über wohldefinierte
Schnittstelle veräußert. Weitere Eigen
schaften sind die Berücksichtigung
des Single Responsibility Principle
(SRP) sowie eine lose Kopplung.

■■ Microservice-Architektur: Verteiltes
Softwaresystem, bei dem die zugrun-
de liegenden Systembausteine aus
Microservices bestehen.

Kasten 1

3

www.objektspektrum.de

nenexperten darstellen. Die Domänenex-
perten sind diejenigen, die ein tief grei-
fendes Wissen über die Domäne besitzen,
welches letztlich durch Anwendungssyste-
me abgebildet werden soll.
Um sich initial ein Bild von der Domä-
ne zu machen und die zu lösende Prob-
lemstellung zu verstehen, liefert Event
Storming einen entsprechenden Ansatz.
Zusammen mit den Domänenexperten er-
arbeiten sich die IT-Experten im Rahmen
eines Workshops ein gemeinsames Ver-
ständnis, das dann in Form von Haftnoti-
zen auf eine Tafel oder Wand aufgebracht
wird. Diese Haftnotizen repräsentieren
dabei unterschiedliche Elemente, die in
Abbildung 1 dargestellt sind. Beispiels-
weise sind Ereignisse bedeutungsvolle
Aktionen, die in der Domäne geschehen.
Bei einem Kommando handelt es sich um
Ereignisse, welche durch Nutzer ausgelöst
werden. Die Bedeutung der weiteren Ele-
mente ist in [Bra17] beschrieben.
Die wiederkehrende Diskussion mit den
Domänenexperten wird auch als Know-
ledge Crunching bezeichnet. Um solche
Diskussionen effizienter und effektiver
zu gestalten, etabliert DDD schließlich
eine sogenannte ubiquitäre Sprache, die
den Wortschatz der Projektmitglieder (IT-
Experten und Domänenexperten) in Form
eines Vertrages festlegt. Üblicherweise
wird die ubiquitäre Sprache in Form eines
Glossars gepflegt.
Für die Implementierung der Artefakte
von DDD bietet sich die objektorientierte

Programmierung (OOP) an. Die Domä-
nenobjekte und ihre Beziehungen zuein-
ander ähneln stark einem UML-Klassen-
diagramm (Unified Modeling Language).
Hier kommt ein zentrales Prinzip von
DDD zum Tragen, denn die in dem Do-
mänenmodell festgehaltenen Strukturen
müssen sich unverändert in dem Quell-
code des Anwendungssystems wieder-
finden. Konkret bedeutet dies, dass zu
jedem Domänenobjekt eine eigene Klasse
existiert. Neben dieser grundsätzlichen
Verwendung des Domänenmodells wird
auch für die Implementierung auf die ubi-
quitäre Sprache zurückgegriffen. Durch
diese Konsistenzhaltung wird eine bessere
Auffindbarkeit des Domänenwissens im
Quellcode erreicht und so die Wartbarkeit
erleichtert.

Weiterhin stellt DDD für die Gestaltung
der Makroarchitektur des Anwendungs-
systems eine Schichtenarchitektur (engl.
layered architecture) vor. Die in Abbil-
dung 2 dargestellte Architektur besteht
aus den vier Schichten:

■■ Präsentationsschicht: Stellt die Ober-
flächenelemente (Web-GUI) zur Verfü-
gung.

■■ Anwendungsschicht: Beinhaltet die
anwendungsspezifischen Funktionali-
täten.

■■ Domänenschicht: Repräsentiert das
Domänenwissen.

■■ Infrastrukturschicht: Realisiert unter
anderen die Persistierung der Daten,
Bereitstellung von Informationen oder
die Anbindung externer Systeme.

Zwar führt DDD diese Schichten ein, zielt
allerdings nur auf die Analyse und Kon-
zeption der Domänenschicht ab. Zu den
restlichen Schichten werden keine Kon-
zepte vorgestellt. Die explizite Trennung
der Domänenschicht von der restlichen
Logik der Anwendung soll zu einer ho-
hen Wiederverwendbarkeit und auch ei-
ner besseren Wartbarkeit der essenziellen
Bestandteile des Anwendungssystems füh-
ren. Dies lässt sich darauf zurückführen,
dass domänenspezifische Aspekte unab-
hängig von einer konkreten Anwendung
oder Anwendungsgruppe gültig sind. In
der Praxis wird dies allerdings oftmals
nicht berücksichtigt, was die Wiederver-
wendbarkeit der entstehenden Microser-
vices teilweise stark einschränkt.

Entwurf von Microservices und
Microservice-Architektur

Beim Entwurf von Microservices sind
einige Entwurfsentscheidungen, die sich
positiv oder negativ auf das Anwendungs-
system auswirken können, zu treffen.
Aus diesem Grund sollte jede Entwurfs-

Abb. 1: Event-Storming-Elemente

Abb. 2: Schichtenarchitektur eines Anwendungssystems basierend auf DDD

 05/2018� Schwerpunkt: Skalierbare Architekturen

4

Es wird dabei nicht das Ziel eines allum-
fassenden Modells fokussiert, sondern
stattdessen lediglich der Ausschnitt, wel-
cher für die Umsetzung der Anforderun-
gen vonnöten ist. Andernfalls würde die
Gefahr eines sogenannten Big Ball of
Mud bestehen. Wie bereits erwähnt, ha-
ben anwendungsbezogene Anforderungen
in der Domäne nichts zu suchen und soll-
ten stattdessen auf Anwendungsseite um-
gesetzt werden. Falls die Notwendigkeit
aufseiten der Microservices besteht (z. B.
aufgrund etwaiger Leistungsanforderun-
gen), so sollten diese in einem dedizierten
Service gekapselt werden, wie beispiels-
weise in Form eines Backend-for-Fron-
tend-Service (BFF) oder in einem dedi-
zierten lokalen API-Gateway, welches als
Zwischenglied zwischen der Anwendung
und den benötigten Microservices dient.
Dort findet sich dann auch die Orchest-
rierung der entsprechenden Microservices
wieder.
Als Architekturstil für die Umsetzung von
Microservices mit DDD hat sich die so-
genannte hexagonale Architektur (oder
auch Onion-Architektur, siehe Abbil-
dung 3) zunehmender Beliebtheit erfreut,
die sich wie folgt zusammensetzt:

■■ Domäne: Beinhaltet alle Domänenob-
jekte (Entitäten und Werteobjekte).

■■ Domänenservices: Services, die auf Do-
mänenobjekten operieren und selbst
keinen eigenen Zustand halten.

■■ Applikationsservices: Services, die als
Bindeglied zwischen Ports- und Adap-
ter sowie Domänenservice und Domä-
ne dienen.

■■ Ports/Adapter: Anknüpfungspunkt von
externen Abhängigkeiten.

An dieser Stelle muss zwischen dem Ar-
chitekturstil des Anwendungssystems und
des Microservice unterschieden werden.
Während der Microservice sich auf die he-

entscheidung mit Bedacht gewählt sein,
was wiederum bedingt, dass notwendige
Informationen vorliegen müssen, um fun-
dierte Entscheidungen treffen zu können.
Gleiches gilt auch für die Umsetzung der
Microservices. Hier liefert beispielsweise
Adam Wiggins zwölf „Regeln“ [Wig17],
die bei der Umsetzung von Microservices
oder im Allgemeinen von Software-as-a-
Service-Anwendungen zu beachten sind.
Dieser Abschnitt soll einige Aspekte auf-
zeigen, die beim Entwurf zu berücksich-
tigen sind.

Anwendungssystem und Anfor-
derungen als Ausgangspunkt

Ein Anwendungssystem soll stets für ei-
nen bestimmten Zweck (beispielsweise
Unterstützung von Geschäftsprozessen in
Unternehmen) eingeführt werden. In die-
sem Artikel betrachten wir die Unterstüt-
zung von Trainierenden im Rahmen eines
Connected Training Systems (CTS).
Bei einem CTS handelt es sich um ein
System, welches aus der Symbiose von
Hardware und Software hervorgeht, um
den Bedürfnissen eines Trainierenden ge-
recht zu werden und so einen optimalen
Trainingsablauf sicherzustellen. In den
Anforderungen des Anwendungssystems
werden diese Zwecke detailliert festge-
halten. In jeder Phase der Softwareent-
wicklung werden das Anwendungssystem
und dessen Zweck fokussiert. Auch DDD
hebt diese Fokussierung hervor. Gleiches
gilt bei der Entwicklung eines microser-
vice-basierten Anwendungssystems. Kei-
neswegs wird ein Softwareentwicklungs-
projekt mit der Absicht gestartet, einen
einzelnen Microservice zu entwickeln.
Beispielswiese werden für den Trainings-
betrieb verschiedene Microservices be-
nötigt, welche verschiedene Teilbereiche
der CTS-Domäne verwalten. Der Aus-
gangspunkt für die Entwicklung neuer
Microservices – und auch für die Wieder-
verwendung dieser – ist die Entwicklung
eines Anwendungssystems und dessen
Anforderungen.
Durch die Verwendung von DDD wird
die Domäne des Unternehmens für das
Anwendungssystem beziehungsweise des
sen Microservices genauer analysiert. Je-
doch werden, wie auch die Schichtenar-
chitektur von DDD zeigt, weitere Aspekte
des Anwendungssystems ausgelassen.
Hierunter fallen auch die eigentlichen
Anforderungen des Anwendungssystems,
welche typischerweise in der Präsenta-
tions- und Anwendungsschicht verankert
sind. Gerade die Anwendungsschicht ist
für microservice-basierte Anwendungen
Dreh- und Angelpunkt. In dieser wird die

Orchestrierung der im Backend befindli-
chen Microservices vorgenommen. Neben
DDD bedarf es somit eines weiteren An-
satzes der Softwareentwicklung.
Ein möglicher Ansatz ist das Behavior-
Driven Development (BDD, [Sma15]),
welches auf die Erhebung der Anforde-
rungen des Anwendungssystems abzielt.
Die Idee von BDD basiert auf Test-Driven
Development (TDD). Mit BDD werden
textuelle Features erstellt, welche später
der Implementierung als ausführbares
Artefakt zur Verfügung stehen. Diese
Ausführbarkeit wird durch vordefinierte
Bausteine erreicht (in Listing 1 fett dar-
gestellt). Gerade für microservice-basierte
Anwendungssysteme ist die Erstellung der
Features wertvoll. Aus diesen können die
Informationen der Anwendungsschicht
und somit die Orchestrierung der Micro-
services gezogen werden.
Zwischen den Ansätzen BDD und DDD
bestehen Synergien. Beide Ansätze bauen
teilweise auf denselben Konzepten (Do-
mänenobjekte, ubiquitäre Sprache) auf.
Dies lässt sich mit dem in Listing 1 dar-
gestellten Feature verdeutlichen. Aus dem
Text des Features lassen sich Domänen-
objekte und Teile der ubiquitären Spra-
che identifizieren, welche für die Model-
lierung des Domänenmodells verwendet
werden können. Beispielsweise lassen sich
die Domänenobjekte Fitness, Training
und Trainingsplan aus dem Feature ent-
nehmen.

Betrachtende Domäne
im Mittelpunkt

Die Domäne sollte im Mittelpunkt des
Entwurfs eines Anwendungssystems ste-
hen und kontinuierlich durch Domänen-
experten und Geschäftsanalysten verfei-
nert und erweitert werden, weshalb auch
hier ein iteratives und inkrementelles Vor-
gehensmodell zum Einsatz kommt.

Listing 1: Beispiel eines BDD-Features zur Trainingsanalyse

5

www.objektspektrum.de

xagonale Architektur beruft, wird für das
Anwendungssystem die Schichtenarchi-
tektur von DDD verwendet. Das Offerie-
ren der Dienstleistung eines Microservice
erfolgt über sogenannte Web Application
Programming Interfaces (Web-APIs). Im
Beispiel der CTS-Domäne stellt der Boun-
ded Context „Trainingsanalyse“ die Res-
sourcen über das Web-API bereit. Weitere
Bounded Contexts (wie der Trainings-
plan) können die bereitgestellten Ressour-
cen über das angebotene Web-API nutzen.
Für den Entwurf von Web-APIs genießt
hier insbesondere der ressourcenorien-
tierte Architekturstil (zweite Ebene des
Richardson Maturity Model, [Fow10])
zunehmender Beliebtheit, was sich bei-
spielsweise anhand der aktuellen und
neu veröffentlichten Web-APIs zeigt. Ein
Web-API bildet durch seine vertragliche
Eigenschaft einen zentralen und essenziel-
len Bestandteil eines Microservice, da nur
über dieses mit dem Microservice kom-
muniziert werden kann. Hier haben sich
insbesondere die Benutzbarkeit, Mäch-
tigkeit und Interoperabilität als wichtige
Qualitätsmerkmale eines Web-API in den
letzten Jahren hervorgetan. Um letztlich
auch die Auffindbarkeit eines Microser-
vice zu begünstigen, sollte das resultieren-
de Web-API derart beschrieben sein, dass
es die gekapselte Domäne in adäquater
Form abbildet. Idealerweise wird die zu-
vor eingeführte ubiquitäre Sprache zu ei-
ner Published Language.

Verknüpfung von Microservices
mittels Context Mapping

Die Makroarchitektur eines microservice-
basierten Anwendungssystems unter-
scheidet sich maßgeblich von einem mo-
nolithischen Anwendungssystem. Die für
die als BDD-Feature erhobenen Anforde-
rungen notwendige Domänenlogik findet

sich verteilt in der Mi-
croservice-Architektur
wieder. Über eine Or-
chestrierung der Mi-
croservices in der An-
wendungsschicht des
Anwendungssystems
wird diese Domänen-
logik vereint und die
Anforderungen wer-
den erfüllt. Die Or-
chestrierung der Mi-
croservices ist dabei
eine Herausforderung
und deren Auffindbar-
keit ist eine Grundvor-
aussetzung.
DDD unterstützt die
Entwicklung eines mi-

croservice-basierten Anwendungssystems
mittels zweier Konzepte. Ein Konzept
bezeichnet den Bounded Context, der zu-
nächst nur eine explizite Grenze für die
Gültigkeit eines Domänenmodells dar-
stellt (siehe Abbildung 4). Genau bedeu-
tet dies, dass das in dem Domänenmodell
festgehaltene Wissen nur innerhalb dieser
Grenze gültig ist; Selbiges gilt für die ubi-
quitäre Sprache.
Sam Newman ist der Auffassung, dass
der Bounded Context ein ideales Mittel
zum Entwurf von Microservices darstellt
[New14]. Denn neben der Beschränkung
der Gültigkeit führt diese Grenze auch zu
einer Trennung zwischen geteiltem und
verstecktem Domänenwissen. Das geteilte
Domänenwissen kann als Schnittstelle zu
der Domänenlogik des Microservice gese-
hen werden.
Nimmt man nun wieder Bezug zu der
Orchestrierung der Microservices für ein
Anwendungssystem, kann das Konzept
der Context Map genutzt werden. Die
Context Map ist ein Diagramm, welches
Bounded Contexts und ihre Beziehungen
zueinander dar-
stellt. Wichtig an-
zumerken ist, dass
Beziehungen zwi-
schen den Bound-
ed Contexts nicht
nur technischer
Natur sind. Eine
Beziehung zwi-
schen den Bound-
ed Contexts kann
ebenfalls als Kom-
munikationsweg
zwischen zwei Ent-
wicklungsteams
gesehen werden.
Die Context Map
kann somit als
Werkzeug für die

Orchestrierung der Microservices in der
Anwendungsschicht des Anwendungssys-
tems verwendet werden.
Wie für DDD üblich, ist auch die Darstel-
lungsform der Context Map frei wählbar.
Ein sehr vereinfachtes Beispiel zur Illust-
ration für eine Context Map findet sich
in Abbildung 4, welche die Bounded Con-
texts – oder Microservices – der CTS-Do-
mäne und deren Beziehungen zueinander
abbildet. Für die CTS-Domäne wurden
sieben Bounded Contexts identifiziert,
welche jeweils einen bestimmten Bereich
der Domäne beschreiben. Diese sind je-
weils durch die Kästen in der Abbildung
dargestellt. Mittels der Linie zwischen den
Bounded Contexts wird eine Verbindung
und somit ein Austausch von Informatio-
nen dargestellt.
Ergänzend liefert DDD wichtige Kon-
zepte, wie eine Form der Orchestrierung
erfolgen kann. Tabelle 1 gibt einen Über-
blick über die wichtigsten Muster für die
Orchestrierung aus [Ver13]. Die jeweils
genutzten Muster können ebenfalls in das
Schaubild ergänzt werden, auf sie wurde
lediglich im Zuge der Übersichtlichkeit
verzichtet.

Resultierende
Microservice-Architektur
sowie deren Umsetzung

Die resultierende Microservice-Archi-
tektur ergibt sich durch den Verbund
der Microservices, welche letztlich in ih-
rer Gesamtheit das Anwendungssystem
widerspiegeln und damit die fachlichen
Anforderungen umsetzen. Die fachli-
che Anforderung der Trainingsanalyse
wird durch den gleichnamigen Bounded
Context umgesetzt. Dieser kümmert sich
um die Auswertung der aufgezeichneten
Trainingsdaten und ermöglicht, dass die
Analyseergebnisse in die Trainingspläne

Abb. 3: Hexagonale Architektur für den Entwurf eines Microservice

Abb. 4: Context Mapping zwischen den Bounded Contexts der CTS-
Domäne

 05/2018� Schwerpunkt: Skalierbare Architekturen

6

mit einfließen können. Gleichzeitig fin-
det hier auch eine Bewertung des aktu-
ellen Gesundheitszustands einer Person
statt. Schließlich ist das System auch da-
rauf ausgelegt, etwaige Trainierende mit
körperlichen Beschwerden bestmöglich
zu unterstützen und hier einen optima-
len Heilungsprozess zu gewährleisten.
Die aufbereiteten Daten erhält dann der
zuständige Arzt oder Physiotherapeut,
sodass dieser manuell den Trainingsplan
den Bedürfnissen seines Patienten anpas-
sen kann.
Die Verknüpfung von zwei Microser-
vices erfolgt ausschließlich über die be-
reitgestellten Web-APIs. Der Bounded
Context Trainingsplan verwendet die
bereitgestellte Programmierschnittstelle
des Bounded Context Trainingsanalyse.
Die Orchestrierung zwischen den beiden
Bounded Contexts ist durch eine Custo-
mer-Supplier-Beziehung realisiert, wobei
Trainingsplan den Lieferanten darstellt
und sich in der Rolle des Kunden befindet.
Das Team, welches den Service des Trai-
ningsplans umsetzt, hat ein gewisses Mit-
sprache- und Gestaltungsrecht bei der Er-
stellung der Web-APIs des Microservices
der Trainingsanalyse. Die Programmier-
schnittstellen können beispielsweise einen
ressourcenorientierten, hypermedia-ba-
sierten oder ereignisgetriebenen Architek-
turstil verfolgen. Die Wahl des entspre-
chenden Architekturstils ist immer von
dem jeweiligen Anwendungsfall abhängig
und sollte daher mit Bedacht gewählt
werden. Wie bereits im Vorfeld erwähnt,
neigen Unternehmen häufig zu ressour-
cenorientierten Web-APIs, was sich auch
an der Anzahl veräußerter Dienstleistun-
gen zeigt. Entscheidend für die Wieder-
verwendbarkeit ist die Trennung der Do-
mänenlogik von der Anwendungslogik,
da die Domänenlogik eine inhärente Wie-
derverwendbarkeit aufweist.
Die Umsetzung der Microservice-Archi-
tektur erfolgt heutzutage in Container-

basierten Virtualisierungsumgebungen.
Bekannte Technologievertreter sind hier
Docker oder rkt. Die Verwaltung der lau-
fenden Container übernehmen wiederum
andere Lösungen, wie Kubernetes von
Google [Bur17]. In diesem Zusammen-
hang ist auch häufig von Container-as-a-
Service (CaaS)-Lösungen die Rede, welche
einen ganzheitlichen Lebenszyklus zum
Betreiben, Verwalten, Überwachen und
Warten von container-basierten Lösungen
anbieten. An dieser Stelle sei beispielsweise
OpenShift [Pic17, Dum18] zu nennen, wel-
che ebenfalls auf Kubernetes setzt. Da die
Darstellung der Umsetzung zu weit führen
würde, wird dies nicht weiter ausgeführt
und stattdessen auf die entsprechenden
Technologien und weiterführende Litera-
tur [Bur17, Pic17, Dum18] verwiesen.

Wartung der
Microservice-Architektur

Zur Bewahrung der Vorzüge einer Mi-
croservice-Architektur gilt es, nach der
Entwicklung von microservice-basierten
Anwendungssystemen auch die Pflege der
entstandenen Bausteine zu berücksich-
tigen. Die Entscheidung, eine Microser-
vice-Architektur als Architekturstil für
die Anwendungslandschaft des eigenen
Unternehmens zu verwenden, hat zur Fol-
ge, dass eine Vielzahl von verschiedenen
Software- und Hardwarekomponenten
verwaltet werden müssen.
Die Wartung der Microservices muss be-
reits auf der organisatorischen Ebene des
Unternehmens stattfinden. Strukturen
und Zuständigkeiten der einzelnen Kom-
ponenten der Architektur müssen festge-
legt und vor allem berücksichtigt werden.
Etabliert hat sich dabei die Zuordnung
eines Entwicklungsteams auf genau einen
Microservice. Dieses Entwicklungsteam
hat die Hoheit, den Microservice fachlich
und technisch voranzutreiben und fun-
giert gleichzeitig als Ansprechpartner für

weitere Entwicklungsteams, die auf die
Funktionalität des Microservice zugreifen
möchten. Somit sind neben den Web-APIs
auch die Kommunikationswege zwischen
den Entwicklungsteams offengelegt.
Die Zuordnung eines Entwicklerteams
zu genau einem Microservice wird durch
das von Melvin Conway aufgestellte Ge-
setz Conway’s Law untermauert [Con68].
Dieses besagt, dass die organisatorische
Struktur des Unternehmens unmittelbar
auf den Entwurf des Produktes Einfluss
nimmt. Angewandt auf die Microser-
vice-Architektur bedeutet dies, dass aus
den Schnittstellen der Microservices die
Kommunikationswege zwischen den Ent-
wicklerteams abgeleitet werden können.
Als positiver Nebeneffekt strukturiert
sich das Unternehmen in kleine autono-
me Entwicklerteams. Die Größe des Ent-
wicklungsteams spielt dabei auch eine
entscheidende Rolle zum effektiven und
effizienten Handeln.
Jeff Bezos, Chief Executive Officer (CEO)
von Amazon, etablierte in seinem Un-
ternehmen die Two Pizzas Team-Regel,
welche besagt, dass ein autonomes Team
von nur zwei Pizzen satt wird [Dye13].
Angewandt auf die Entwicklerteams der
Microservices, stellt diese Regel eine gute
Grundlage zur Bestimmung der Teamgrö-
ßen dar.
Je nach Komplexität der Microservice-
Architektur variiert der Aufwand zur
Wartung. Viele Anwendungen und viele
Microservices sind ohne geeignete Un-
terstützung nicht zu bewältigen. Martin
Fowler stellte in seinem Blog den An-
satz der HumaneRegistry vor [Fow08,
Abe16], ein Service, der als Wiki-Portal
für andere Services dient. Über die Hu-
maneRegistry können somit die Micro-
services auffindbar gemacht werden. Dies
ist ein essenzieller Faktor für den Erfolg
einer Microservice-Architektur. Weiterhin
kann die bereits vorgestellte Context Map
genutzt werden. Bei der kontinuierlichen

Muster Beschreibung

Partnership Die Teams kooperieren gemeinsam an den beteiligtem Bounded Contexts, um einen Misserfolg zu vermeiden

Shared Kernel Es handelt sich um einen expliziter Bereich, welcher von vielen Teams geteilt wird

Customer-Supplier Der Supplier (Lieferant) bietet die Funktionalität, die der Customer (Kunde) benötigt. Der Kunde hat dabei ein Mitspracherecht und einen
Einfluss auf das Modell des Lieferanten

Conformist Wie bei der Customer-Supplier-Beziehung, nur nutzt das abhängige Team das Modell des liefernden Teams ohne Mittbestimmungsrecht

Anticorruption Layer Eine zusätzliche Schicht, welche das Modell von anderen Modellen trennt und die Domänenobjekte aufbereitet

Open Host Service Eine Schnittstelle, welche Zugriff auf eine Menge von Diensten gewährt

Published Language Der Dateiaustausch läuft über eine Schnittstelle und es werden die gleichen Datenformate verwendet

Separate Ways Es besteht keine Kooperation zwischen den Teams und die eigene Umsetzung der benötigten Funktionalität

Tabelle 1: Übersicht über die Beziehungen zwischen Bounded Contexts

7

www.objektspektrum.de

Konzepte aus DDD genutzt werden. So
unterstützt DDD sowohl beim Entwurf
eines einzelnen Microservice als auch
bei der Strukturierung des gesamten An-
wendungssystems. Bei der Gestaltung des
Anwendungssystems wird die Domäne in
den Mittelpunkt gerückt, wodurch eine
hohe Wiederverwendbarkeit und Flexi-
bilität des Anwendungssystems bei neuen
Anforderungen erreicht werden kann.
Daneben kann durch die Modularisierung
und Kapselung mittels Microservices eine

Pflege einer Context Map ist sie ein wert-
volles Werkzeug zur Wahrung einer orga-
nisierten Microservice-Architektur.

Fazit

Der Entwurf von Microservices und
letztlich der Microservice-Architektur
kann auf unterschiedliche Arten erfol-
gen. Um letztlich die anvisierten Vorzüge
eines modularen und verteilten Anwen-
dungssystems zu erhalten, können die

Dr. Pascal Giessler
(pascal.giessler@kit.edu)

ist Head of Research and Develop­

ment bei der syndikat7 GmbH und

promovierte im Bereich des domä­

nengetriebenen Entwurfs von Micro­

services und ressourcenorientierten

Web-APIs am Karlsruher Institut

für Technologie (KIT) innerhalb der

Forschungsgruppe Cooperation &

Management (C&M). Daneben ist

er Dozent an der HECTOR School of

Engineering and Management mit

Schwerpunkt auf dem Entwurf und

der Entwicklung von Microservices.

Benjamin Hippchen
(benjamin.hippchen@kit.edu)

ist Berater der Unternehmensbe­

ratung Scheer GmbH und befasst

sich dort mit der Thematik des

Process Mining. Neben seiner

Beratertätigkeit ist er als wissen­

schaftlicher Mitarbeiter der

Forschungsgruppe Cooperation &

Management (C&M) am Karlsruher

Institute für Technologie (KIT) ange­

stellt. Im Rahmen seiner Promotion

befasst er sich mit Microservice-

Architekturen und dem domänenge­

triebenen Entwurf. Darüber hinaus

ist er Teilnehmer des Software-

Campus-Programms.

Michael Schneider
(michael.schneider@kit.edu)

ist wissenschaftlicher Mitarbeiter

der Forschungsgruppe Coopera­

tion & Management (C&M) am

Karlsruher Institute für Technologie

(KIT). Seine Forschungsschwer­

punkte sind der domänengetriebene

Entwurf, die verhaltensgetriebene

Entwicklung und das Internet der

Dinge.

Prof. Dr. Sebastian

Abeck
(sebastian.abeck@kit.edu)

leitet an der KIT-Fakultät für Infor-

matik die Forschungsgruppe Coope­

ration & Management (C&M). Seine

Forschungsinteressen betreffen

insbesondere die Microservice-

Architekturen, Connected Cars und

das Identitäts- und Zugriffsmanage­

ment. Die von C&M entwickelten

Konzepte werden intensiv mit

Partnern aus der Forschung und

der Industrie im Hinblick auf deren

Einsetzbarkeit und Praxistauglich­

keit erprobt.

Die Autoren

hohe Wirtschaftlichkeit bei etwaigen An-
passungen erzielt werden, da diese durch
das Single Responsibility Principle (SRP)
nur an einer Stelle durchzuführen sind.
Auch hier gilt es, letztlich etwaige Abwä-
gungen zu tätigen, falls die resultierenden
Kosten der organisatorischen Abhängig-
keit zwischen Entwicklungsteams eine se-
parate und lose gekoppelte Entwicklung
überwiegen.� ||

Literatur & Links
[Abe16] S. Abeck, D. Forschner, P. Giessler, Service-Registry als zentrale Komponente in einer Microservice-Architektur, in: JavaSPEKTRUM, 06/2016

[Bra17] A. Brandolini, Introducing Event Storming, Leanpub, 2017

[Bur17] B. Burns, K. Hightower, J. Beda, Kubernetes: Up and Running, O’Reilly, 2017

[Con68] M. E. Conway, How do Committees Invent, Datamation 14.4, 1968, S. 28-31

[Dum18] G. Dumpleton, Deploying to OpenShift: A Guide for Busy Developer, O’Reilly, 2018

[Dye13] J. Dyer, H. Gregersen, The Secret to Unleashing Genius, Forbes September 2, 2013, S. 96-100

[Eva03] E. Evans, Domain-Driven Desing: Tackling Complexity in the Heart of Software, Addison-Wesley, 2003

[Fow08] M. Fowler, HumaneRegistry, 2008, siehe: https://martinfowler.com/bliki/HumaneRegistry.html

[Fow10] M. Fowler, Richardson Maturity Model, 2010, siehe: https://martinfowler.com/articles/richardsonMaturityModel.html

[Mil15] S. Millett, Patterns, Principles and Practices of Domain-Driven Design, John Wiley & Sons, 2015

[New14] S. Newman, Building Microservices, O‘Reilly, 2014

[Pic17] St. Picozzi, M. Hepburn, N. O’Connor, DevOps with OpenShift: Cloud Deployments Made Easy, O’Reilly, 2017

[Sma15] J. F. Smart, BDD in Action – Behavior-Driven Development for the Whole Software Lifecycle, Manning, 2015

[Ver13] V. Vernon, Implementing Domain-Driven Design, Addison-Wesley, 2013

[Wig17] A. Wiggins, The Twelve Factor App, 2017, siehe: https://12factor.net/

