
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

A Context Map as the Basis for a Microservice Architecture

for the Connected Car Domain

Sebastian Abeck
1
, Michael Schneider², Jan-Philip Quirmbach³, Heiko Klarl⁴, Christof

Urbaczek⁵ and Shkodran Zogaj

Abstract: In the near future cars will have two properties: They will be electrically powered and

they will be connected to the Internet. Such cars will provide a huge amount of sensor data which

can be accessed via web APIs in order to develop innovative connected car applications, such as

traffic control, hazard warning, assisted or even autonomous driving. However, current software

solutions in this field are mainly monoliths solving single problems in an isolated way. Therefore,

we propose a systematic approach by which each single connected car application becomes part of

a microservice architecture. This approach requires a sound and well-elaborated domain model

from which the microservices' APIs and implementation of the applications can be systematically

derived. The main contribution of this paper is a context map for the connected car domain. We

demonstrate a structured software development approach with the example of a mobile

application, the Electric Car Charger, by showing how this application is integrated into the

context map and, thus, into a connected car microservice architecture.

Keywords: Connected car, microservice architecture, domain modeling, context map, bounded

context, API

1 Introduction

Connected cars are in the center of innovative and complex mobility concepts for our

society [Co+16]. Such mobility solutions, in which cars are only one means of

transportation besides bus, train, bikes etc., requires the exchange of data between all

involved transportation means (vehicle-to-vehicle) and the transportation infrastructure

(vehicle-to-infrastructure) via the Internet. Therefore, the Internet of Things (IoT) aspect

plays an important role in the field of integrated mobility solutions [DK+18]. Connected

cars are one of these "things" of the Internet for which such new mobility services are

offered. They can be seen as the drivers of IoT-based mobility solutions resulting from

the economic power of the automotive industry. The necessary movement towards e-cars

and their integration into an overall Internet-based mobility infrastructure lead to

disruptive changes in this industrial domain. Besides the traditional automobile

manufacturers offering cars as a product to their customers, new companies from the IT

domain appear on stage. They perceive the cars as things of the Internet and provide

1 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany, sebastian.abeck@kit.edu

² Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany, michael.schneider@kit.edu
³ Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany, jan-philip.quirmbach@student.kit.edu

⁴ xdi360, Munich, Germany, heiko.klarl@xdi360.com

⁵ xdi360, Munich, Germany, christof.urbaczek@xdi360.com

2 S. Abeck, M. Schneider, J. Quirmbach, H. Klarl, C. Urbaczek, and S. Zogaj

connected car services. Examples of such services are shown in Fig. 1.

Figure 1: Examples of Connected Car Services

To be able to develop flexible and maintainable connected car solutions, a software

architecture is needed which can be easily extended by new functional services. These

services are provided by, and offered to, different organizations. We believe that a

microservice architecture [Ne15] is an adequate concept to build a connected car system.

This system consists of loosely coupled connected car services using other services via

web APIs specified in a standardized language (e.g. OpenAPI). The microservice

architecture is based on a domain model [Ev03] which prescribes the functional structure

of the connected car domain.

Starting from the related work (Section 2), this paper elaborates a context map and its

included bounded contexts of the connected car domain model (Section 3). The usage of

the elaborated domain model artifacts is shown with the example of an Electric Car

Charger (ECC) service (Section 4). The main advantage of our approach is the

integration of the connected car service, in our case the ECC, into the overall connected

car domain. The domain model and the derived microservice architecture provide the

basis for all connected car services leading to a non-monolithic, loosely coupled

connected car system (Section 5).

2 Related Work

Intensive work on digital technology and software engineering in the automotive sector

A Context Map as the Basis for a Microservice Architecture for the Connected Car Domain 3

started about the turn of the millennium [Br03]. The main competence of car companies

traditionally lies in the field of mechanical and electrical engineering. In order to cope

with the high complexity of automotive software, frameworks specific for the

automotive domain were developed, such as the Volvo Cars Architecture Framework

[PK+16] or the Automotive Architecture Framework [BG+09]. A characteristic of this

work is the focus on the architecture of the software that is needed in a car. In [PK+16]

the aspect of connected cars is covered in two so-called viewpoints, namely "connected

cars and safety" and "security and privacy of connected cars". Although such automotive

frameworks cover certain aspects of the automotive domain, they do not provide a

domain model which is one of the main goals of this paper.

The Domain-Driven Design (DDD) [Ev03, Ve13] provides the conceptual foundation of

our approach. As shown by [SH+18, HG+17], DDD can be applied in a structured

software development process in order to derive a sound and comprehensible

microservice architecture. A central part of the domain model is the so-called context

map which is the result of DDD's strategic modeling. A context map is used to

decompose the domain into subject-specific (especially not technically-driven) parts

which are called bounded contexts. Since each bounded context is a candidate for a

microservice [Ne15], the context map can be seen as a blueprint of the microservice

architecture for the modeled domain. In [TH+18] a systematic approach to derive the

bounded contexts in order to identify microservices is presented. The functional

decomposition is carried out based on the requirements on the software system. A

characteristic of this approach is given by the fact that a concrete software system, and

not the domain, is in the focus. Therefore, a context map of the domain is not part of this

approach.

Existing white papers from different companies (e.g. [KA+16, VA+14, DK12]) provide

a fine-grained decomposition of a connected car's application landscape into different

categories, such as navigation, vehicle management, or safety. This related work

describes the domain in a more or less informal way. Nevertheless, for our work they

provide a valuable practical input for the formal connected car domain model which we

develop in the next Chapter 3 and apply to build a microservice-based application in

Chapter 4.

3 Connected Car Categories

In the related work, different categories for the connected car domain are proposed

which are illustrated in Figure 2. Vehicle management and driving management are

directly related to the core functionality of a car. The category vehicle management is

divided into the sub-categories remote control, diagnosis and maintenance; sub-

categories of driving management are driver assistance, parking, and refueling [KA+16].

Further, there exists a cross-cutting functionality safety and security. Safety and security

need to be concerned by all other categories, most important for vehicle management

4 S. Abeck, M. Schneider, J. Quirmbach, H. Klarl, C. Urbaczek, and S. Zogaj

and driving management, because critical functionalities need to be secure. For example,

it should not be possible that one can remotely control a car without permission. Safety

and security can be divided into further sub-categories, such as emergency and theft

protection.

Vehicle Management S
a

fe
ty

 &

S
e

c
u

rity

Infotainment

Driving Management

Fleet Management

Comfort and Convenience

Figure 2: Existing Connected Car Categories

Infotainment as well as comfort and convenience provide less critical, but relevant

functionalities. The infotainment category implies entertainment, information and

smartphone integration and deals with streaming music and videos, interacting with

social networks and providing news and weather information. Hand-free calls are an

example of smartphone integration. Furthermore, information about the current traffic

and navigation are also attributed to this category. Comfort and convenience are divided

into the sub-categories well-being, interaction, and payment. Comfort and convenience

include personalizing the vehicle, for example by pre-setting seats, temperature or

ambience lighting.

In addition, issues referring to the governance of services across many cars deal with the

category fleet management which consists of sub-categories like policies and

optimization [DK12].

4 Formalization Based on UML and Domain-Driven Design

We use the existing proposals of a decomposition of the connected car domain to

develop a formalized domain model based on the Domain-Driven Design (DDD,

[Ev03]). This domain model serves as a design artifact from which we derive the

microservice architecture for all connected car applications we are developing. The

approach is not specific to the connected car domain since we use it also for other

complex domains.

The context map displays the strategical relationships of a domain [HS+19, HG+17]. A

context map consists of subdomains, bounded contexts and relationships between the

bounded contexts. Following DDD, the bounded contexts are assigned to domain-

specific subdomains, which further improve the overview of the domain. According to

our approach, subdomains are modeled as a UML package which is extended by the

stereotype <<subdomain>>.

A Context Map as the Basis for a Microservice Architecture for the Connected Car Domain 5

A bounded context represents a candidate for a microservice which can be developed by

an independent team [Ne15]. We formalize a bounded context as a packaging

component which is annotated with the stereotype <<bounded context>>. Each bounded

context contains tactical models like the relation view which describes the inner structure

of this bounded context [SH+18].

Relationships between bounded contexts are formalized using UML associations

extended by stereotypes corresponding to the context map relation. Depending on the

type of relationship, the team communication between the bounded contexts is defined.

[Ev14] provides several communication patterns for the relationships between bounded

contexts. For example, the pattern <<conformist>> is a directed association between two

bounded contexts. The consuming service has no influence on the offering service.

Foreign bounded contexts are encapsulated by an <<anti-corruption layer>> (ACL). The

ACL is formalized as a package which is part of the bounded context that uses the

foreign bounded context.

5 Context Map for the Connected Car Domain

A decomposition of the connected car domain into subdomains and bounded contexts

based on the formalization is derived. The context map, as shown in Figure 3 displays

the result of the formalized connected car domain and suggests a separation of the

different software services. For an easy overview and a better understanding, we put the

main subdomains and bounded contexts in the center. Cross-section bounded contexts

are placed on the right side of the context map diagram. Domain-enhancing bounded

contexts that have a stronger user interaction are placed above the central area, and,

finally, domain-supplementing bounded contexts, which express a more technical

content, are located below the central area. Subdomains and bounded contexts that are

close together are modeled in close proximity.

The context map is a design artifact of a structured software development process for

microservice-based applications. Typically, CamelCase and PascalCase are used as a

naming convention in such software development artifacts (e.g. VehicleManagement

instead of vehicle management or Vehicle Management).

The category vehicle management offers a good starting point for the derivation of the

subdomain VehicleManagement. We see these sub-categories as services for the vehicle

management and therefore, bounded contexts for vehicles, sensor processing, remote

control, diagnostics, and maintenance are established for this subdomain. The bounded

context SensorProcessing processes the raw sensor data and provides semantically

6 S. Abeck, M. Schneider, J. Quirmbach, H. Klarl, C. Urbaczek, and S. Zogaj

Figure 3: Proposed Context Map of the Connected Car Domain

enriched IoT data via an API. An example of how IoT platforms manage their sensor

data with an IoT gateway and offer their sensor data by providing an API is given in

[MK+17]. Functionalities for one remote controlling the vehicle are offered by the

bounded context RemoteControl. The bounded context Diagnostic includes aspects like

driving behavior analysis and telemetry data transmission. The bounded context

Maintenance uses diagnostic data to perform predictive maintenance. If necessary,

remote maintenance is handled by this bounded context. In addition, information from

the bounded context Vehicle can be used to determine the functions supported by the

vehicle. The bounded context Vehicle is one of the most important ones, because it

offers the data base for many other bounded contexts.

In addition to the vehicle management, a customer management is required. This

subdomain is needed in a connected car domain and the derived microservice

architecture, even though no such category exists. Therefore, we added the subdomain

CustomerManagement. This subdomain manages the data of the customer. For example,

only the owner (or privileged users) of the car should be allowed to use the remote-

control service for locking and unlocking the vehicle. The user-specific information is

handled by the bounded context Driver. Since the customer is bound to contracts, we

added a bounded context Contract. The customer data could be provided by a foreign

identity and access management (IAM) system. The bounded context Driver uses the

foreign bounded context UserDirectory. The UserDirectoryACL provides an additional

A Context Map as the Basis for a Microservice Architecture for the Connected Car Domain 7

layer and handles the transformation of the external and internal data for the bounded

context Driver. Thus, the bounded context Driver can use its own data representation.

In our context map, the category driving management results in a subdomain

DrivingManagement. An assisting system for parking helps the driver to simplify the

parking process, whereas a parking system supports the driver to find free parking lots.

In addition, services offering information about gas stations are part of this subdomain.

Thus, we derived the bounded contexts Parking and GasStation which provide the

necessary information. A connection to an external payment service could simplify or

fully automate the payment process.

Further, there is the infotainment category which implies entertainment, information and

smartphone integration. These services are outsourced into independent bounded

contexts as Traffic, Multimedia, Weather, and Navigation, in order to be able to

adequately handle the underlying domain logic. This is necessary to guarantee the

understanding and uniform representation of the information. For example, multimedia

can also be separated into a bounded context, which takes over the connection to third

parties and ensures uniform formats for video, image, and audio.

One of the most relevant subdomains in the context map of the connected car domain is

SafetySecurity. We established a bounded context for each of the subcategories, since

each of these can be encapsulated as a separate service: The bounded context

TheftProtection may offer an alarm (locally and on the smartphone), as well as the

tracking of the vehicle on the smartphone and automatic associated damage reports. In

case of a technical defect or an accident, the bounded context Emergency can process the

data. Through the connection to the bounded context Vehicle, relevant vehicle-specific

data can be automatically retrieved and transmitted for the intervention teams.

The classification of the category comfort into the microservice architecture is not

straightforward because the subdomain Comfort does not fit the connected car domain.

However, several subdomains can be derived from this category. A payment provider is

required to process the payment. Therefore, a new bounded context Payment is derived

and placed into the subdomain PaymentManagement. Further, the category comfort

contains the automatically pre-setting of the seat position for the driver. For this reason,

the bounded context Driver manages the driver together with their data and personalized

vehicle settings which could be used for a car sharing application.

The fleet management is particularly relevant for car sharing or for company fleets. A

distinction between analysis, optimization, and guidelines is important for this area. The

owner of the vehicle is a company, while the driver is an employee. Based on this, the

functionalities and authorizations differ in the context of fleet management; the company

is given access to data such as locations (logistics/just-in-time) and fleet consumption.

These issues are captured in the subdomain FleetManagement. The bounded context

Fleet is responsible for cross-fleet analysis, while the bounded context Policy can be

used to define certain rules that must be observed by the vehicles in the fleet.

8 S. Abeck, M. Schneider, J. Quirmbach, H. Klarl, C. Urbaczek, and S. Zogaj

6 Case Study: Electric Car Charger Application

The connected car context map we have developed in the last chapter builds the

fundament for all applications of this domain. One such application is the Electric Car

Charger (ECC) which we informally describe in Section 6.1. In the following Section

6.2, we show how ECC fits into the connected car context map and we illustrate the

development process with the example of the ECC application. We summarize the

benefits of the context map's use for software development in Section 6.3.

6.1 ECC Domain Objects and Relationships

The ECC application implements a software solution for charging stations for electric

cars. This application allows the user to search for charging stations displayed on a map

view. Furthermore, it is possible to filter these stations based on several attributes, e.g.

by plug type. The ECC also enables a monitoring function during the charging process to

obtain further information during the charging.

Figure 4: Domain Sketch of the ECC Application

Figure 4 shows a sketch of all relevant subjects and objects and their relations. The

sketch provides an overview of the application-related part of the domain. The central

element of the sketch is the charging station. A charging station can be a public station

which could be installed, for example, at a parking lot or a private station which can be

installed from a company at its private property. A customer is also the driver of the e-

car. A driver can use the ECC application to (i) get information about the charging

station, (ii) monitor the charging process, (iii) search a public station, and (iv) show all

A Context Map as the Basis for a Microservice Architecture for the Connected Car Domain 9

public stations along a certain route the driver wants to take. An e-car can charge its

battery at a charging station which a provider provides. When an e-car is charged at a

public station the station generates a bill.

6.2 Use of the Context Map

The ECC context map was developed with the help of the overall context map of the

introduced connected car domain. The proposed context map in Figure 3 shows the

placement of the ECC by dyeing the relevant ECC objects in grey. The ECC-relevant

parts of the context map were identified as follows: The main part for the ECC is the

bounded context ChargingStation in which the ECC application was developed. The

bounded context Vehicle is required to access the information concerning the battery of

the vehicle. Due to the fact that the vehicle is related to the bounded context Driver, it is

possible to get information about the driver. The driver also provides the contracts of the

driver through the bounded context Contract. The contract for the usage of a private

charging station is stored in this bounded context. The relationship to the bounded

context Payment is required for the payment of the charging process.

The development process that is used during the development of the ECC application is

based on Behavior-Driven Development (BDD) [SM15] and Domain-Driven Design

(DDD) [Ev03]. Figure 5 shows how the context map is related to software development

artifacts. During the analysis phase, the required functionalities are written in Gherkin

features which are the central BDD artifact. The advantage of Gherkin is that the

features can not only be written in a human-readable way, but also be executed and

tested. Each Gherkin feature belongs to one bounded context, which is also a candidate

for a microservice. A bounded context usually consists of several features.

10 S. Abeck, M. Schneider, J. Quirmbach, H. Klarl, C. Urbaczek, and S. Zogaj

Figure 5: Context Map and related Software Development Artifacts

One feature of the ECC is searching for a public station (see Figure 5). This feature

should display all public stations on a map view. During the design phase, the context

map for the ECC application was designed. The ECC application was realized in the

bounded context ChargingStation. For the technical interface of the resulting

microservice, a web API based on the architectural style REST (REpresentational State

Transfer, [Fi00]) was designed which offers the required functionality of the ECC.

Figure 6 shows an excerpt of the Swagger UI for the request GET/public-stations/{id}.

The implementation of the backend and frontend was split and developed by two teams

that could work almost independently of each other. The frontend team implemented the

graphical user interface for the ECC, whereas the backend team implemented the

required functionality in the backend and exposed it via the web API. The data of the

public stations can be accessed via one of the web API methods, in particular the GET

/public-stations method.

A Context Map as the Basis for a Microservice Architecture for the Connected Car Domain 11

Figure 6: GET Request for a Specific Charging Station

Figure 7 illustrates the map view as the central frontend element of ECC. Charging

stations that are in close proximity are clustered, as shown by the numbered black dots

on the map.

Figure 7: Map View of the ECC Application

Depending on the zoom level, the points are clustered together. When the zoom level is

increased the clusters are resolved. Single charging stations are indicated by the bolt

icon. An orange bolt icon means that the charging station is currently not available,

whereas a green icon indicates a currently available charging station. The blue dot

represents the current position of the user. The filter options described in Section 6.1 can

be applied in the left menu. Further and detailed information about a charging station is

available when one clicks the icon of a charging station.

12 S. Abeck, M. Schneider, J. Quirmbach, H. Klarl, C. Urbaczek, and S. Zogaj

6.3 Benefits of the Context Map for the Development of Microservices

A context map introduces a structure of a domain that is elaborated by domain experts

over a long period of time. The knowledge of the domain is processed in a way that the

microservice architecture can be derived from the context map and the microservices

from the including bounded contexts. Whenever a new application adhering to the

domain should be developed the software development team benefits from the domain

knowledge captured by the context map. In the example of the Electric Car Charger, the

connected car context map provides a primary architectural structuring of this

application (e.g. VehicleManagement including Vehicle, DrivingManagement including

ChargingStation, etc., see Figure 3) in a way that the connected car application, ECC,

fits into the overall domain structure, and thus into the overall connected car

microservice architecture derived from this structure. This enables the re-use of

microservices that were implemented during the development of former connected car

applications. In our specific case, before the ECC application, a car sharing application

was developed which, among others, required the implementation of the Vehicle and the

Driver bounded context as microservices. Since the car sharing application and the ECC

application are based on the same connected car context map, they can share parts of the

map, in this specific case microservices related to the vehicle and the driver. The more

applications based on the context map are developed the more microservices can be re-

used by newly developed applications.

7 Conclusion

A sound understanding of the domain for which a software application should be

developed is necessary. A misunderstanding of the stakeholders who should have the

domain knowledge and the developer of the software is the main reason why software

projects often fail [Sm15]. In the connected car domain a common understanding is

constantly growing because there is a high demand on flexible and environmentally

friendly mobility solutions. So far, this understanding is documented in an informal way

mostly in white papers from companies. We presented an approach on how to formalize

the domain knowledge that is available in the field of connected car. Our approach is

based on the widely accepted software design concept of Domain-Driven Design. Since

this concept provides no formalization on the level of the modeling language, we

extended the (also well accepted) Unified Modeling Language to be able to specify the

strategic and tactical modeling parts of the domain model by different diagrams. A

central diagram which expresses the main structure of the domain is the context map. In

this paper, we proposed an initial draft of a context map for the connected car domain.

Certainly, the concrete subdomains and including bounded contexts are subject for

further discussions. The real value of our contribution is the systematic and formally

sound approach on which the discussion of the domain knowledge with experts from the

domain can be started – and documented in a way that this knowledge can be directly

used in a structured development process. We believe that the close connection of

A Context Map as the Basis for a Microservice Architecture for the Connected Car Domain 13

domain knowledge capturing (also called knowledge crunching) with the software

development process is a main advantage of our approach.

We demonstrated our approach with the example of the microservice-based software

system Electric Car Charger. We have shown how the context map becomes a central

design artifact of the software development process. The context map expresses the main

structure of the domain and makes sure that the independently developed microservices

are fitting into an overall connected car service landscape. Our approach guarantees that

the model and its implementation are always in sync – according to our practical

experience this is one of the most important demands of Domain-Driven Design. So far,

the alignment of model and implementation is mainly done manually leaving room for

model-to-code and code-to-model automation.

References

[Br03] Manfred Broy: Automotive Software Engineering. 25th International Conference on

Software Engineering, 2003.

[BG+09] Manfred Broy, Mario Gleirscher, Stefano Merenda, Doris Wild, Peter Kluge, Wolfgang

Krenzer: Automotive Architecture Framework: Towards a Holistic and Standardised

Sys-tem Architecture Description, Technical Report of the of the Technische Universität

München and White Paper of the IBM Cooperation, June 2009.

[Co+16] Riccardo Coppola, Maurizio Morisio: Connected Car: Technologies, Issues, Future

Trend. ACM Computing Surveys, Vol. 49, No. 3, Article 46, Publication date: October

2016.

[DK12] Vivek Diwanji; Nilesh Karamarkar: Exploring the Connected Car, Whitepaper, cogni-

zant. 2012, URL: https://www.cognizant.com/InsightsWhitepapers/Exploring-the-

Connected-Car.pdf, [retrieved: 2019.04.02].

[DK+18] Soumya Kanti Datta, Mohammad Irfan Khan, Lara Codeca, B. Denis, Jerome Haerri,

Christian Bonnet: IoT and Microservices Based Testbed for Connected Car Services,

IEEE 19th International Symposium on "A World of Wireless, Mobile and Multimedia

Networks" (WoWMoM), p. 14 – 19, 2018.

[Ev03] Eric Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software. Ad-

dison-Wesley Professional, 2003.

[Fi00] Roy T. Fielding.: Architectural Styles and the Design of Network-based Software

Architectures, University of California, Irvine, Dissertation, 2000.

https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation_2up.pdf,

[retrieved: 2019.04.02].

[HG+17] Benjamin Hippchen, Pascal Giessler, Roland H. Steinegger, Michael Schneider,

Sebastian Abeck: Designing Microservice-Based Applications by Using a Domain-

Driven Design Approach, International Journal of Advances in Software, ISSN 1942-

2628, vol. 10, no. 3&4, pages 432 - 445, 2017

[HS+19] Benjamin Hippchen, Michael Schneider, Iris Landerer, Pascal Giessler, Sebastian

14 S. Abeck, M. Schneider, J. Quirmbach, H. Klarl, C. Urbaczek, and S. Zogaj

Abeck: Methodology for Splitting Business Capabilities into a Microservice

Architecture: Design and Maintenance Using a Domain-Driven Approach, Conference

on Advances and Trends in Software Engineering (SOFTENG 2019), Valencia, 2019.

[KA+16] Per-Henrik Karlsson, Hong K. Ahn; Byeongmin Choi: Connected Car – A New Eco-

system, Ipsos Business Consulting. 2016, URL:

https://www.ipsos.com/sites/default/files/2016-06/022.1-connected-car-a-new-

ecosystem.pdf, [retrieved: 2019.04.02].

[MK+17] Arthur de M. Del Esposte, Fabio Kon, Fabio M. Costa, Nelson Lago: InterSCity- A

Scalable Microservice-based Open Source Platform for SmartCities, In Proceedings of

the 6th International Conference on Smart Cities and Green ICT Systems

(SMARTGREENS), pages 35-46, 2017.

[Ne15] Sam Newman: Building Microservices, O’Reilly Media, Inc., 2015.

[PK+16] Patrizio Pelliccione, Eric Knauss, Rogardt Heldal, Magnus Agren, Piergiuseppe Mal-

lozzi Anders Alminger, Daniel Borgentun: A proposal for an Automotive Architecture

Frame-work for Volvo Cars, IEEE Workshop on Automotive Systems/Software

Architectures, 2016.

[SH+18] Michael Schneider, Benjamin Hippchen, Sebastian Abeck, Michael Jacoby, Reinhard

Herzog: Enabling IoT Platform Interoperability Using a Systematic Development

Approach by Example, Global Internet of Things Summit (GIoTS). IEEE, 2018. pages 1

– 6, 2018.

[Sm15] John Ferguson Smart: BDD in Action – Behavior-Driven Development for the whole

software lifecycle. Manning Publications, 2015.

[TH+18] Shmuel Tyszberowicz, Robert Heinrich, Bo Liu, and Zhiming Liu: Identifying Micro-

services Using Functional Decomposition. International Symposium on Dependable

Software Engineering: Theories, Tools, and Applications. Springer, Cham, 2018.

[VA+14] Richard Viereckl, Jörg Assmann; Christian Radüge: In the fast lane – The bright future

of connected cars, strategy&., 2014, URL:

https://de.scribd.com/document/379805993/Strategyand-In-the-Fast-Lane-pdf,

[retrieved: 2019-04-02].

[Ve13] Vaughn Vernon: Implementing Domain-Driven Design. 1st. Addison-Wesley

Professional, 2013.

