
Challenges of the Digital Transformation in Software Engineering

Michael Gebhart

iteratec GmbH

Stuttgart, Germany

e-mail: michael.gebhart@iteratec.de

Pascal Giessler, Sebastian Abeck

Cooperation & Management

Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany

e-mail: pascal.giessler@kit.edu, abeck@kit.edu

Abstract—Digital transformation describes the changes that the

increased digitization within society causes or influences in all

aspects of human life. The digital business transformation can

be understood as the impact of the increased digitization on the

business domain. Companies are challenged to transform, i.e.,

to create new business models that consider and leverage the

increased digitization. As a result, from a software engineering

perspective, the digital transformation changes the way how

software is developed. Current trends are the development of

applications for mobile devices and Internet of Things (IoT)

applications. However, with these new application fields, new

challenges for software engineering arise that have to be met to

successfully conduct software projects in a digitized world. It is

necessary for software companies to solve these challenges if

they want to be successful on the market. In this article, these

challenges are worked out. Furthermore, solution approaches,

such as Application Programming Interface (API) strategy and

an appropriate team culture, are derived to help software

developers and companies to prepare for future software

projects and to remain competitive.

Keywords-digital transformation; digitization; software

engineering; challenge

I. INTRODUCTION

Digital transformation can be understood as the changes
that the digital technology causes or influences in all aspects
of human life [1]. From a business perspective, companies are
required to react on the increased digitization and to adapt
accordingly. The resulting digital business transformation
represents the idea of creating new or adapting existing
business models based on the increased digitization within
society, such as the usage of mobile devices, social media, and
Internet of Things (IoT) [2].

As software systems are meant for supporting human life,
the digitization influences the way how software should be
developed. For example, more and more software projects are
conducted that focus on the development of applications for
mobile devices, such as smart phones and tablets, or the IoT.
According to current studies, such as the one conducted by EC
SPRIDE in collaboration with the University of Darmstadt
and Fraunhofer Institute for Secure Information Technology
(SIT) [3], this trend will continue and apps and rather small
special purpose software predominantly in use on smart
phones and tablets will further propagate.

These new application fields of software systems bear new
challenges for the software engineering discipline. For

example, in the last years, several new technologies and
frameworks have evolved that are especially meant for the
upcoming new devices and technologies. Instead of
developing the entire functionality from scratch, more and
more web services are available that are integrated into the
developed solution [3]. Furthermore, software systems
become increasingly omnipresent [1], which requires software
developers to consider the consumer of software. The
attractiveness of the software for the consumer, i.e., its user
experience, has become one of the most important success
factors for software systems.

To be successful on the market, software companies have
to solve these challenges. However, in most cases, companies
try to respond on the digitization with changes of the
development methodology. For example, agile development
is wide-spread today. But, the increased digitization requires
more than focusing on the development methodology. It is
more about the attitude when developing software and the
necessary mindset and environment. It is about the roles and
their responsibilities during the development. The digitization
requires to deal with the upcoming changes, such as the
increasing technology heterogeneity, instead of trying to
avoid them.

This article examines the challenges caused by the
digitization in society. The challenges are systematically
worked out and described. Purpose of this article is to support
software developers and companies to prepare for these
challenges the digitization and the resulting digital
transformation bring with them. For that reason, in addition,
after introducing the challenges, possible solution approaches
are presented in this article. The challenges and solutions are
not limited to technological aspects. Instead, they focus both
technological and organizational respectively human-oriented
aspects. For that reason, this paper is meant for software
developers and business managers who want to prepare
themselves or their company for the future.

The article is organized as follows: Section II examines
existing work in the context of digital transformation and its
impact on software engineering. The resulting challenges of
the digital transformation on software engineering are
summarized in Section III. Section IV introduces solution
approaches to overcome the challenges managed in Section
III. Section V concludes this article and introduces future
research work.

136Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

II. BACKGROUND

This section analyzes existing work in the context of
digital transformation and possible impacts on software
engineering. Based on this work, in the following section, the
future challenges for software engineering and solution
approaches are derived and summarized.

In [1], Stolterman and Fors introduce the term digital

transformation as the changes that the digital technology
causes or influences in all aspects of human life. They state
that the most crucial challenge for Information System
Research is the study of the overall effects of the ongoing
digital transformation of society. This is, why we focus on the
effects of digital transformation on software engineering from
a holistic view. We do not focus on software development
methodologies like Scrum. Instead, we describe challenges on
software engineering as a whole with the involved people in
mind.

Opportunities to create new business models based on the
results of the increased digitization in society are described by
Berman in [2]. Even though Berman focuses on the business
perspective and does not describe concrete recommendations
for the software engineering, the work gives some important
hints about how the business will evolve. This allows to derive
the impact on software engineering. For example, according
to Berman, the focus should be on digital products and
services with better customer experience. This shows the
importance of considering the customer experience as
developer as part of the software engineering.

In [3], Ochs presents a study about emerging trends in
software development. The study is conducted by EC
SPRIDE in collaboration with the University of Darmstadt
and Fraunhofer Institute for Secure Information Technology
(SIT) sponsored by the German Federal Ministry of Education
and Research. The study shows essential characteristics for
future software systems. We reuse these software
characteristics, adapt them to software engineering with focus
on digital business transformation and combine them with
challenges mentioned in other work.

A list of challenges and methodologies to master the
digital transformation is introduced by Hanna in [4]. The
aspects described by Hanna are business-driven and consider
companies as a whole. For example, Hanna describes how to
develop the human resources, leadership and institutions,
policies and regulations. Even though it is not focusing
Information Technology (IT), we use this work to derive
challenges that relate to software engineering.

The importance of solutions being consumer-oriented is
emphasized by Leimeister et al. [5]. They describe that “in
digital societies, companies must understand that the digital
customers and their preferences are key and at the center stage
for developing innovative solutions”. This work shows that it
is necessary to rethink about the way solutions are developed
today.

The analysis of existing work shows that the digitization
within society influences the software engineering. With the
digital transformation, new challenges arise that have to be
considered by software companies. Some work also describes

certain challenges and trends for software engineering that
have to be solved. However, a list of challenges of the digital
transformation in software engineering with concrete advices
how to solve these challenges is missing. This is the
motivation to investigate this aspect in more detail.

III. CHALLENGES OF THE DIGITAL TRANSFORMATION IN

SOFTWARE ENGINEERING

In this section, the challenges of the digital transformation
in software engineering described. The challenges are derived
from existing work and experiences. The challenges consider
both technical and organizational, i.e., human-oriented
aspects as both are important for successful software projects.
They constitute the basis for the solution approaches
introduced in Section IV.

A. Reduced Time-To-Market

More than ever, new innovations are expected by the
customers to be available as soon as possible [4]. Especially
due to the increasing digitization in society and thus, due to
the focus on private customers, the time to market has to be
further reduced. This applies to completely new products and
new features for existing products.

As a result, software developers and companies have to
prepare their development process in way that allows to
deploy new functionality continuously.

B. Flexibility and Agility

The reduced time to market requires software systems to be
flexible enough to consider new requirements afterwards.
Furthermore, the high competitive pressure requires to replace
originally planned features by other ones. Thus, if not already
done, the development process has to be agile to react on
changing requirements.

Wherever useful, software developers and companies
have to avoid waterfall development models and work in an
agile way to be flexible enough to consider new and just
needed functionality.

C. New Disciplines

In the last few years, a high number of new business words
have been established with partially new concepts. Terms like
Big Data, Internet of Things (IoT), Industry 4.0, and Machine
Learning comprise complex topics that might be understood
to create competitive products.

Thus, software developers and companies have to
understand these new terms and concepts. As described by
Hanna in [4], technological change creates new demand for
learning. This requires enough time and freedom and efficient
trainings for developers.

D. New Devices and Technologies

With the increased digitization, new devices are used by the
customers [4]: mobile devices, virtual reality glasses, smart
watches, intelligent in-ear headphones, and all the intelligent
devices in a smart home [3]. They all create a completely new
device environment with partially completely new
technologies. The number of programming languages,
partially device-specific frameworks increases.

137Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Thus, software developers and companies have to prepare
for completely new devices and technologies. This means that
companies have to establish trainings and give developers the
necessary freedom that allows them to learn new concepts.
The training of developers is an important success factor as
the new devices and technologies bring new possibilities with
them that are necessary to stay competitive in the market.

E. High Degree of Technology Heterogeneity

The high number of devices and technologies results in
another challenge: The rapid time to market does not allow to
wait for a homogenization of the technology portfolio. As a
result, software developers and companies are challenged to
deal with a high number of devices and technologies in
parallel. Within one project, several different technologies
might be used with all their specifics.

For that reason, developers and companies have to find a
solution to deal with this high degree of heterogeneity.
Possible solutions are on the one side to standardize the
interfaces between these technologies and on the other side to
enable a continuous integration that considers different
technologies.

F. Stronger Networking

Software systems developed today are mostly connected
to other already existing software systems. This kind of
networking can be the classical usage of programming
interfaces to exchange data (e.g., by means of web services
[6]) or the integration with social networks for authentication.
In every case, software systems are less often isolated
components. Instead, customers want them to interact with a
bunch of existing components [2][3].

For that reason, for developers, it is necessary to know the
requirements customers have on the networking aspect of
software.

G. Extended Service Market

Today, we find more and more services providers that offer
infrastructure, platform, and software as a service [2].
Compared to traditional software development, the trend is to
reuse existing functionality instead of developing it from
scratch [3]. Even though, using software from within the cloud
includes operational costs, the development speed and the
quality of the results can be much higher when reusing
provided services.

Thus, the way how to develop software systems changes
from coding the required functionality to assembling existing
solutions. Software developers and companies have to
understand the opportunities this way brings with it. As a
result, the new service market has to be overseen. Software
developers and companies have to inform about services that
are currently available on the market.

H. Consumer-/ Customer-Orientation

Today, more and more software systems are used by
ordinary people. Especially with the advent of smart phones
and tablets, there is a new understanding about how software
systems are expected to be used. The opportunity to enhance
products and services for a better customer experience is

mentioned by Berman in [2]. Also, Leimeister et al.
emphasize the necessity to create solutions that are consumer-
oriented [5].

This means that software developers and companies have
to focus more than ever on the user of the system. An
appealing user interface with a clear user experience has
become one central success factor for consumer applications.
Thus, developers and companies have to consider this aspect
in their development process and to increase their competence
in this area if not already done.

I. Business-Awareness

One central idea of the digital business transformation is
to consider and leverage the increased digitization within
society to create new business models. According to Hanna
[4], product innovation has become crucial for sustained
growth, competitiveness, and moving up the value ladder. As
innovations require technological knowledge, the creation of
business models is not a pure business task any longer. More
than ever, developers themselves are invited to communicate
new business ideas and models to the management.

For that reason, the developers within a company are
required to think more business-oriented and to think outside
the box. On the other side, the management is required to
support developers in this task. This requires on the one hand
freedom to give new ideas a trial and on the other side to open
up to new ideas from developers.

J. Combination with Legacy IT

The increased speed with which new devices and
technologies arise results in a faster aging of existing IT [3].
Especially in grown landscapes as they exist in bigger
companies, the existing IT cannot be replaced rapidly. For that
reason, developers and companies will be more often
challenged to combine their new and modern software
systems with IT that can be considered as legacy in the
meanwhile. In [4], Hanna states that “adjusting the social and
institutional environment to take advantage of a technological
revolution and its associated techno-economic paradigm
involves painful adjustments, often disruptions to, and even
destruction of, legacy systems, institutions, practices, and
processes”. For example, in some cases, the new intelligent
solutions have to exchange data with existing systems. In
other cases, the new solution has to be deployable in an
infrastructure that is not as modern as the new software
system.

Thus, software developers and companies have to keep in
mind where the software system is expected to be executed.
Possibly, it is necessary to work out a more complex
integration and deployment process to combine the new and
modern software system with existing legacy IT.

IV. SOLUTION APPROACHES

In Section III, challenges of the digital transformation in
software engineering were introduced. To overcome these
challenges, next, solution approaches are described. These
approaches are meant to help software developers and
companies to prepare for future software projects and to
remain competitive.

138Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

A. Microservices

Microservices can be seen as “small and autonomous
services that work together” [8] via well-defined web
interfaces. The size of a microservice is usually given by
bounded contexts derived from business boundaries [8][9].
Therefore, the business has direct influence on the resulting
system design which is also known as Conway’s Law. But,
there is also an influencing factor towards the opposite
direction especially when evolving the service landscape [8].

The concept behind microservices results in a large
number of benefits that address the mentioned challenges in
Section III: First, reduced time to market when developing
new functionalities through service autonomy. Each service
can be developed and deployed separately without a central
release coordination between different development teams. If
this is not possible, the bounded context of the microservice
should be usually revised and adapted to fit current needs.

Second, the support of technology heterogeneity when
designing service landscapes especially microservice
landscapes. We can decide to use different technologies inside
each microservice based on our needs instead of using a
company-wide standardized one [8]. For example, one service
can be written in Java, another one in C#. It is not necessary
to have company-wide unification. The communication
between microservices with different technological setup is
ensured by the service interface. This service interface must
follow a technology-independent approach, such as the
architectural style Representational State Transfer (REST)
introduced by Fielding [7].

Third, the reuse aspect that is the core idea behind service
landscapes [10]. Each service can expose different
functionality via a well-defined service interface so that other
services can benefit from that offer. For discovering existing
services in a service landscape, a service discovery solution,
such as Consul or Eureka, is usually set up.

B. API Design and Strategy

An Application Programming Interface (API) can be seen
as a contract prescribing how to interact with the underlying
system. In the context of a service landscape, the system can
be an operable service that exposes business functionality via
an API.

Today, APIs are a big deal and the growth of public APIs
regarding their activity measured in requests is still unbroken
[11]. Popular examples for public APIs are Facebook with the
Graph API or Google with several APIs, such as YouTube
Data API or Cloud Vision for image recognition.

There are several reasons for serving an API, such as
offering business functionality for a mobile application, more
flexibility in providing content, and allowing external
developers or partners to transform new use cases in reality
[11].

When designing an API, it is very important to have clear
vision and business objective. In addition to the business view,
it also crucial to comply with some design principles and best
practices to simplify the usage of the API. For instance, in
[13], several best practices for RESTful Web APIs are
identified, collected, and explained.

C. Automation

Automation can be a key factor in the success of a
company since it can drastically reduce the time and effort
incurred by recurring tasks. This in turn increases the team
productivity because the team does not have to deal with these
tasks anymore.

For instance, deploying new applications or services
should be as easy and fast as possible to reduce the time-to-
market. At best, there is only one command for the
deployment. That is why, Platform as a Services (PaaS)
solutions, such as Heroku, DigitalOcean, or Amazon Web
Services (AWS), are particularly popular among companies
since it simplifies and reduces the necessary effort for
deployment or infrastructure configuration.

But, deployment is just one of many examples, such as
application monitoring or log analysis. It should be clear that
an initial invest has to be taken, but it will pay off.

D. Technical Governance

The technical governance provides corporate-wide
guidelines that have to be respected by all development teams
to keep the heterogeneity within limits. Although, it is
desirable when development teams take individual design or
technological decisions, it makes, for example, no sense to
choose a different coding style or to use a distinct deployment
workflow. Sometimes, some technological decisions taken by
team are not appropriate within the company due to bad
experience in the past or other business related reasons.

Particularly important are corporate-wide guidelines when
composing software components or services since the
guidelines lay the foundation of the API that forms a contract
for communication (see Section IV.B). For instance, the usage
of different naming styles of exposed functionality can
impede the reusability. Or in the worst case, when choosing a
technology-dependent API, it can even prevent the reuse
entirely.

In our opinion, any decision that affects the whole system
should be covered by one or more guidelines and governed by
a technical committee.

E. Accepting and Dealing with Heterogeneity

As mentioned, the technical governance tries to limit the
heterogeneity in case of, for example, API design, but it does
not want to avoid it when it comes to technological decisions.
The company has to get used to the fact that several different
technologies are applied. This is not a weakness but a strength
because the new technologies offer new possibilities.
Furthermore, a heterogeneous technology landscape avoids
that too many people get used to a technology that becomes
outdated one day. Developers are challenged to learn new
technologies. As a result, developers remain attractive for the
labor market. Finally, also, the company remains attractive for
developers and young applicants that prefer to work and learn
new and modern technologies.

139Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Thus, heterogeneity is nothing that should be avoided.
Instead, the company should learn to deal with and get used to
it. The attempt to homogenize the IT at any price will result in
a reduced adoption of new technologies, thus less innovative
software projects and business models. It is more important to
accept the coming changes and to make it part of the company
philosophy.

F. Critical Analysis of new Trends

Every day, new technical solutions in form of libraries,
frameworks, and tools appear on the internet. Some of them
offer a comparable solution to a recurring problem or use case.
Then again, others offer a completely new approach to solve
the same problem.

The rapid growth of new technologies, the necessary
learning and training effort as well as the lack of detailed and
objective comparison between technologies in the same
domain make it difficult to choose one technology over the
other. In many cases, the taken decision has also to be
reasoned especially when some people or the whole company
must be convinced to rely on this technology for upcoming
projects. There is no silver-bullet on how to choose the right
technology since there are several factors that have to be
considered. Furthermore, it is often an illusion to choose one
technology for the next ten or more years since at some point
a new technology or new approach will arise and form a
community around it. Then, the cycle starts from the
beginning.

We recommend to be open for new technologies or
approaches and not hang on prior decisions based on the motto
“It still works and will also be a suitable solution for the next
years. We do not need a new technology”. In our opinion, new
technology should be analyzed as soon as possible to get a
clear picture if it makes sense to follow the further
development and how this approach can improve the already
used technology in a specific application field. Thereby, it is
important to look behind the scenes and get an idea of how the
technology works and how it is build up since this is crucial
for a proper and reasoned decision.

G. Design

A lot of great services and (digital) products pop up every
day on the market. The design is the first impression that a
potential customer will get from a product. It is often a
misunderstanding that the design is only the user interface of
an application. Instead, we should see the design as a method
for problem solving that can be applied on different contexts,
such as the user interface of an application but also on an API
of a service. For instance, if the API design is not easy to
understand or easy to try and use, it can have a negative impact
on the adoption rate. Similar to this, if the frontend of an
application looks confusing, customers could look after the
opponent’s solution. The design is therefore an essential
ingredient of a product that decides if a potential customer is
interested or not.

When developing new products, the whole development
team should concentrate on a good design for the target user
group instead of only focusing on the functionality aspect of
the product.

H. Team Culture

The team culture of the development team can have a
positive impact on the productivity and the self-awareness of
each member. It can be difficult to form a good team culture
since there are several factors that have to be considered, such
as the identification of each member with the company or how
proud someone is about shipped or developed products.
Nevertheless, there are some key points that should be
achieved within a company.

First, you should give each member of the development
team the feeling that (s)he is unreplaceable and essential for
the success for the product.

Second, each manager should be open for discussions and
ideas since innovation comes from ideas. Each developer
should be encouraged to be more business-oriented and think
outside the box.

This leads to the third important key point: The employees
are the most important asset of a company and should be
treated accordingly. For development teams, you should give
them the opportunity to learn and teach as much as possible to
keep up with the industry leaders since no developer wants to
work with “old” technologies for the rest of his working life.
If this is not possible in current projects, then the company
should find a compensation for the developers, perhaps by
starting an open source project that allows to study new
technologies. Thus, the management is responsible to give the
necessary freedom and to provide trainings wherever possible.

V. CONCLUSION AND OUTLOOK

Digital business transformation can be understood as the
idea of creating new or adapting existing business models
based on the increasing digitization within society. As these
new business models influence the way software systems have
to be developed, software developers and companies have to
adapt to these changes. For that reason, in this article, we
derived and described challenges for software engineering the
digital business transformation brings with it. Furthermore,
we listed solution approaches for software developers and
companies for overcoming these challenges.

Our list of challenges and solution approaches is expected
to help software developers and business managers of
software companies to remain competitive in times of digital
transformation. Furthermore, more than ever, it is important
to remain attractive for the labor market. Competitiveness
requires companies to be attractive for talents. For that reason,
the challenges and solution approaches are not limited to
technological aspects. Instead, we considered aspects that are
both technological and organizational, i.e., human-oriented.

For the future, we plan to refine the solution approaches.
In the past we started with methodologies for designing
services in service-oriented architectures [12]. We extended
this work for API design and strategy including best practices
for RESTful web services [13] and approaches to measure the
compliance regarding these best practices [14]. We will
continue this technological work to provide guidelines for
designing a clear and maintainable API. In addition, we will
focus on the non-technological, the human-oriented aspects.
We will investigate solution approaches for being attractive

140Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

for talents as this is significant for remaining competitive on
the market. Furthermore, we will investigate how to adjust the
mindset within companies so that new innovative and
competitive business models can be created. This will help
companies to benefit from the increased digitization and to
prepare for the future.

REFERENCES

[1] E. Stolterman and A. C. Fors, “Information technology and the good

life,” in Information Systems Research: Relevant Theory and Informed
Practice, pp. 687-692, 2004.

[2] S. J. Berman, “Digital transformation: opportunities to create new
business models,” Strateg. Leadersh., vol. 40, no. 2, pp. 16–24, 2012.

[3] C. Ochs, “Emerging trends in software development & implications for
IT security: an explorative study”, EC SPRIDE, 06/2014.

[4] N. K. Hanna, Mastering Digital Transformation: Towards a Smarter
Society, Economy, City and Nation. Emerald Group Publishing
Limited, 2015.

[5] J. M. Leimeister, H. Österle, and S. Alter, “Digital services for
consumers,” Electron. Mark., vol. 24, no. 4, pp. 255-258, 2014.

[6] S. Varghese, “Web Development with Go: Building Scalable Web
Apps and RESTful Services,” Berkeley, CA: Apress, pp. 159–209,
2015.

[7] R. Fielding, “Architectural styles and the design of network-based
software architectures,” University of California, Irvine, 2000.

[8] S. Newman, “Building Microservices – Designing fine-grained
systems,” O’Reilly, 2015, ISBN 9781491950357.

[9] E. Evans, “Domain-Driven Design: Tacking Complexity In the Heart
of Software,” Addison-Wesley Longman Publishing Co., Inc., 2003,
ISBN 0321125215.

[10] T. Erl, SOA – Design Patterns, Prentice Hall, 2008.
ISBN 978-0-13-613516-6.

[11] D. Jacobsen, G. Brail, and D. Woods, “APIs – A Strategy Guide,”
O’Reilly, 2012, ISBN 9781449308926.

[12] M. Gebhart and S. Abeck, “Metrics for evaluating service designs
based on soaml,” International Journal on Advances in Software,
4(1&2), pp. 61-75, 2011.

[13] P. Giessler, M. Gebhart, D. Sarancin, R. Steinegger, and S. Abeck,
“Best Practices for the Design of RESTful web Services,“ International
Conferences of Software Advances (ICSEA), pp. 392-397, 2015.

[14] M. Gebhart, “Query-based static analysis of web services in service-
oriented architectures,” International Journal on Advances in Software,
7(1&2), pp. 136-147, 2014.

141Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

