
Overview of a Domain-Driven Design Approach

to Build Microservice-Based Applications

Roland H. Steinegger, Pascal Giessler, Benjamin Hippchen and Sebastian Abeck

Research Group Cooperation & Management (C&M)
Karlsruhe Institute of Technology (KIT)

Zirkel 2, 76131 Karlsruhe, Germany
Email: (steinegger | pascal.giessler | abeck)@kit.edu, benjamin.hippchen@student.kit.edu

Abstract—The current trend of building web applications using
microservice architectures is based on the domain-driven design
(DDD) concept, as described by Evans. Among practitioners,
DDD is a widely accepted approach to building applications. Ap-
plying and extending the concepts and tasks of DDD is challenging
because it lacks a software development process description
and classification within existing software development process
approaches. For these reasons, we provide a brief overview
of a DDD-based software development process for building
resource-oriented microservices that takes into consideration the
requirements of the desired application. Following the widely
accepted engineering approach suggested by Brügge et al., the
emphasis is on the analysis, design, implementation and testing
phases. Furthermore, we classify DDD and microservice-based
application into regular software development activities and
software architecture concepts. After the process is described,
it is applied to a case study in order to demonstrate its potential
applications and limitations.

Keywords–Domain-driven design, API, resource-orientation, do-
main model, software development process, microservices, backend-
for-frontend

I. INTRODUCTION

Over the past few years, microservice architectures have
evolved into a popular method for building multiplatform
applications. A well-known example is Netflix, who offers
applications for a number of platforms, including mobile
devices, smart TVs and gaming consoles [1]. Service-oriented
architectures are the foundation of microservice architectures,
as microservices have special properties [2]. A microservice
is autonomous and provides a limited set of (business) func-
tions. In service-oriented architectures, designing services and
selecting boundaries is a key problem.

The traditional approach, as discussed by Erl [3], suggests
a technical and functional separation of services. In contrast,
according to Evans [4], domain-driven design (DDD) provides
the key concepts required to compartmentalize microservices
[1]. The DDD approach provides a means of representing the
real world in the architecture, e.g., by using bounded contexts
representing organizational units [5], and also identifies and
focuses on the core domain; both of these characteristics lead
to improved software architecture quality [6]. In microservice
architectures, these bounded contexts are used to arrange and
identify microservices [1]. Using DDD is a key success factor
in building microservice-based applications [1].

When applying DDD to the development of microservice-
based applications, several problems may arise, depending on

the level of experience of the development team. Domain-
driven design offers principles, patterns, activities and ex-
amples of how to build a domain model, which is its core
artifact. However, it neither provides a detailed and systematic
development process for applying these principles and patterns
nor does it classify them into the field of software engineer-
ing. Classifying the activities, introduced by DDD, into the
activities of a software development process could improve the
applicability. Futher, the classification of the patterns and prin-
ciples into software architecture concepts, such as architecture
perspectives and architecture requirements, supports software
architects in desiging microservice architectures.

In addition, there are no clear proceeding regarding how to
derive the necessary web application programming interfaces
(web APIs) that act as a service contract between microservices
and the application. The importance of a service contract
is described by Erl [3]. From the business perspective, the
web APIs also have strategic value; therefore, they must be
designed in manner that emphasizes quality [7].

Furthermore, applications and, in particular, user interfaces,
are often not considered or only considered superficially during
the process of designing service-oriented architectures [1]
[3]. However, the application can play a major role when
building the underlying microservices. Domain-driven design
emphasizes that the application is necessary to determine the
underlying domain logic of microservices; the user interface
is important to consider when designing specific web APIs for
the UI when using the backends for frontends (BFF) pattern
[1]. When designing microservices within the software-as-a-
service (SaaS) context, there is no graphical user interface;
instead, there is a technical one. The target group shifts from
end users to external companies or independent developers
who can benefit from the capabilities of the service offered. For
this reason, a web API has to be designed in such a manner
that it can map as many possible use cases for a particular
domain as possible. The resulting set of use cases represents
the requirements that must be handled by the web API and the
microservices.

We experienced these challenges when establishing a soft-
ware development process based on DDD to build SmartCam-
pus, a service-oriented web application. During the process
we could not find literature that addressed these problems.
Thus, we classify DDD activities within the field of software
engineering, arrange the components of a microservice-based
application according to the layers of DDD and describe the ac-

tivities necessary in building microservice-based applications.
We apply these activities in an agile software development
process used to build parts of the SmartCampus application
and discuss both the results and limitations.

This article is structured as follows: In Section II, DDD
and microservice architecture, including a general introduction
to software architecture and development and other related
concepts, are introduced. Section III classifies DDD and mi-
croservices and introduces the software development activities
required in building microservice-based applications according
to the requirements of DDD. In the next section, a case
study demonstrates the application of these activities within
a software development process, including artifacts. The limi-
tations discovered while applying the activities are described in
Section V. A conclusion regarding the activities and possible
future areas of inquiry is presented in Section VI.

II. FOUNDATION AND RELATED WORK

This section provides an overview of model-driven engi-
neering (an approach that is similar to DDD), DDD itself,
traditional software engineering activities (which are used to
classify DDD activites), software architecture in general (as the
foundation being the foundation for classifying microservice
architecture) and microservice architecture.

A. Model-Driven Engineering
Douglas C. Schmidt [8] describes Model-Driven Engineer-

ing (MDE) as an approach that is used to effectively express
domains in models. The Object Management Group (OMG)
introduced their framework model-driven architecture (MDA)
[9] to support the implementation of MDE. MDA identifies
three steps necessary in moving from the abstract design to
the implementation of an application. Three models are created
by carrying out these steps: 1) computation independent model
(CIM) provides domain concepts without taking technological
aspects into consideration, 2) platform independent model
(PIM) enriches the CIM with computational aspects; and 3)
platform specific model (PSM) enriches the PIM with the
aspects of implementation that are specific to a particular
technological platform.

B. Software Engineering Activities and Domain-Driven De-
sign

Brügge et al. [10] describe a widely accepted software
engineering approach in the context of object-orientation. We
use their concepts to classify the activities we identified
to build microservice-based applications using DDD. This
object-oriented approach works well when small teams build
applications that range over few domains implemented. [10]
offers an overview of the activities that take place during
software development: requirements elicitation, analysis, sys-
tems design, object design, implementation, and testing. (These
activites are discussed further in the article’s introduction of
the development activities.)

Domain-driven design is an approach that is used in appli-
cation development where the domain model is the central
artifact. Eric Evans introduced this approach in the book
Domain-Driven Design and identified the essential principles,
activities and patterns required when using DDD [4].

A domain model that conforms to Evans’ DDD approach
contains everything that necessary to understand the domain

[4]. This approach goes beyond the traditional understanding
of a domain model, which is connected to a formalized
model using the unified modeling language (UML) [11]. To
distinguish between the two concepts, following Fairbanks
[12], we use the term information model which corresponds
to a computation independent model (CIM). It is a part of
the domain model and consists of concepts, relationships and
constraints. In order to support downstream implementation,
Evans adds implementation specific details to the model. The
resulting domain model corresponds to a PIM. In Evans’
approach to DDD, the central principle is to align the intended
application with the domain model. The domain model shapes
the ubiquitous language that is used among the team members
and functions as a tool used to achieve this goal.

C. Microservice Architectures
Vogel et al. provide a comprehensive framework for the

area of software architecture [13], which is used to classify
microservices and DDD. Their architecture framework has
six dimensions: 1) architectures and architecture disciplines,
2) architecture perspectives, 3) architecture requirements, 4)
architecture means, 5) organizations and individuals and 6)
architecture methods. The essential terms used in describing
an architecture are: systems, which consist of software and
hardware building blocks; a software building block can be
a functional, technical or platform building block. Building
blocks can also consist of other building blocks and may
require them. The authors also introduce the concept of ar-
chitecture views; their definition is influenced by the IEEE
[14]. Architecture views are part of the documentation that
describes the architecture. Architecture views are motivated by
stakeholders’ concerns. These concerns specify the viewpoint
on the architecture and, thus, specify the views.

Newman provides a comprehensive overview of microser-
vices and related topics from and industry perspective [1].
He defines a microservice as a “small, autonomous service”
that does one thing well; and adds that the term “small”
is difficult to define. In contrast to services in a service-
oriented architecture according to Erl [3], the single purpose
principle results in microservices having similar sizes within an
architecture [2]. Two mapping studies regarding microservices
and microservice architecture reveal that a gap in the litera-
ture regarding these topics exists [15] [16]. (Further relevant
information is discussed during the section of this article that
classifies microservice architectures.)

III. PROCESS

This section classifies the activities involved in of DDD
and concepts related to microservice architectures; further-
more, the software development activities involved in building
microservice-based applications using DDD are introduced.
The activities discussed can be applied to various software
process models. However, DDD requires one to continuously
question and adapt one’s understanding of the domain. Thus,
agile software development processes are most suitable.

A. Classification
We identify specifications, that are missing when just

applying DDD to build a microservice-based application, by
classifying DDD and microservice architecture using the soft-
ware architecture concepts of Vogel et al. [13]. We divide the

classification process into two parts: first, we discuss the archi-
tecture perspective and second the architecture requirements.

Concerning the architecture perspective, software architec-
ture can be divided into macro- and micro-architecture; it can
further be divided into organization, system and building block
level. The organization and system levels form the macro-
architecture whereas the building block level can be assigned
either to the macro or micro-architecture depending on what
is required for the concrete architecture. [13]

Despite their names, microservice architecture and the
domain model describe the macro-architecture. A microservice
is a functional or technical software building block that require
a platform to run on. Neither DDD nor microservices limit
the underlying platform. When using DDD, microservices are
structured according to the organizational units using bounded
contexts from the domain model [1] [17]. The domain objects
within a bounded context specify the core architecture of a
microservice.

Figure 1. Software building blocks and their layers in a microservice-based
application

Domain-driven design requires a layered architecture to
separate the domain from other concerns [4]. Evans suggests
a four layered architecture, consisting of the user interface,
application, domain and infrastructure layers. Figure 1 shows
the distribution of these layers among the software building
blocks of microservice-based applications. On the highest ab-
straction level, microservice-based applications can be divided
into applications and microservices. The application consists of
a frontend, which is either thin or thick (meaning that it is with
or without application logic), and its backend, which provides
the application logic. The backend uses the microservices to
access the domain layer or general infrastructure functional-
ity. Each microservice has an application layer on top. The
application layer translates requests into either the domain or
infrastructure layers.Infrastructure logic may be part of each
software building block. In our approach, we applied the layer
distribution following Miller’s approach [18].

In a layered architecture, higher layers can communicate
with lower layers. Figure 2 depicts the layered architecture’s
communication process applied to the above-mentioned soft-
ware building blocks [18]. The frontend should not directly call
the microservices; we emphasize this by using dashed arrows.

Concerning architecture requirements, the decision to build
microservice-based applications is taken at the organizational
level (see the classification of service-oriented applications in
[13]). Along with a microservice architecture, the organization

Figure 2. Communication between components

should choose a protocol that allows all of the microservices
within the organization to communicate; e.g., using represen-
tational state transfer (REST) over hypertext transfer protocol
(HTTP) with a set of guidelines or an event bus. The platform
running the microservices (e.g., docker), the database technolo-
gies, the implementation of identity and access management
etc. might also be organizational requirements; when building
a microservice architecture the software architects have to
decide, whether or not these concerns should be homogenous.
We could not identify any requirements concerning the sys-
tem or building block levels that are based on DDD or the
microservice approach.

Some specification is still missing. The domain model
specifies the functional view on the domain but does not
consider technical aspects [4]. Thus, in addition to the domain
model, there is a need for artifacts that describe the mi-
croservice architecture, including technical microservices and
platform architecture. Furthermore, assuming that the domain
model describes the architecture of the domain layer, the user
interface, application, and infrastructure layer are not specified.
Translating this into the context of the software building
blocks, the frontend and backend may require specification.
The decision to add further artifacts could be based on the
risks involved in the application, as discussed by Fairbanks
[12]. In our activities, we decided to add a user interface
(UI)/user experience (UX) design, which specifies both the
user interface and the user’s interaction. Thus, this artifact
specifies the frontend and backend.

B. Activity Overview
Next, we introduce the activities involved in building

microservice-based applications. These activities facilitate the
development of applications within similar domains. We align
our activities with the traditional software development activ-
ities described by Brügge et al. [10]. Therefore, the activities
end after testing, and we do not discuss deployment and/or
maintenance. Figure 3 depicts the three activities and their
interrelations: requirements elicitation and analysis, design and
implementation and testing.

During the requirements elicitation and analysis, two sub-
activities take place: first, the information model, as part of
the domain model, is created by “crunching knowledge” with
domain experts; second, a prototype is designed and is dis-
cussed with both the user and customer. As both activities are
closely related (when discussing prototypes, the knowledge of
the domain gets deeper, and when discovering the information

Figure 3. Overview of the activities used in building microservice-based
applications

model, terms or workflows might change), we combined them
into a single activity.

The design is comprised of the sub-activities involved in
designing the domain and the APIs of the microservices. Based
on the UI/UX design and further discussions with the user, the
information model is refined, e.g., design decisions are made,
and design patterns are applied. Domain design is comparable
to the system design activity discussed by Brügge et al.
[10]. The system is divided into subsystems that, according
to Conway’s Law [5], can be realized by individual teams
using bounded contexts. Domain design results in a domain
model that must be bound to the implementation artifacts.
As the microservices offer access to the domain model and
translate from the application layer to the domain layer, both
the UI/UX design (representing the user interface layer and the
application layer) as well as the domain model (representing
the domain layer of DDD) is used to design the web APIs of
the microservices. If using a BFF, its web API is designed,
too. This activity can be assigned to the object design activity
discussed by Brügge et al. [10].

After this preliminary work, the microservices are imple-
mented and tested. The web APIs describe the microservices’
entry points. These entry points and their application logic
are implemented and tested, as the microservices’ domain
model. The constraints defined in the domain model, such as
multiplicities or directed associations, are sources for domain
tests.

Evans states that developing a “deep model” with which
to facilitate software development requires “exploration and
experimentation” [4]. Thus, software developers have to be
open-minded to gain insights into the domain across the
whole software development activities. This knowledge prob-
ably leads to changes in artifacts created during the previous
activities. Therefore, iterations and jumping back to previous
phases is possible in each phase. To be more clear, it is
common to switch between phases and activities. Of course,
experienced developers may do fewer mistakes and discover
insights earlier, but hidden knowledge and misunderstandings
are common. In the next sections, the phases are explained in
more detail.

C. Requirements Elicitation and Analysis
The first activity is about understanding the needs of

the user. Two non-chronological ordered activities take place
in this phase: exploration of the domain and designing a
prototype. These activities highly influence each other, e.g.,
the terms from the domain model are used in the prototype
while new insights might change them. We see a strong binding

between the origination process of the domain model and
design prototyping, due to the missing specifications that are
not captured during domain modeling. Every domain concept
displayed on the design prototype has to be modeled in the
domain model and vice versa. Small iterations within the
analysis are needed in order to validate that both artifacts are
consistent.

1) Domain Analysis: Exploring the Domain with DDD:
Without a complete understanding, building satisfying appli-
cations is getting hard. In our presented approach, we focus
on Evans book “Domain-Driven Design: Tackling Complexity
in the Heart of Software” (DDD) to understand the needs and,
thus, the domain through modeling [4]. Creating a compre-
hensive domain model in this phase needs experienced domain
modelers to gain knowledge. After this step, we have a domain
model that is equal to an information model (see Section II-B).
Unified Modeling Language (UML) class diagram syntax is
used to describe concepts and their relationships, constraints,
etc. [19] [12].

According to DDD, collaboration with customers is es-
sential to explore and particularly model the domain. So the
first and recurring step of DDD is Knowledge Crunching [4].
Simultaneously to discussions with customers, the develop-
ment team carries out the modeling activity and creates the
domain model step by step. By following the pattern Hands-
On Modelers, every team member involved in the software de-
velopment process should also be part of the domain modeling
to increase creativity [4]. In addition, a Ubiquitous Language
will be established, which is the cross-team language. The
origination process of the domain model is highly influenced
by exploration and experimentation [4]. It is far better if a
not completely satisfying model is going to implementation,
than to refine the domain model over and over again without
risking the implementation [4]. Creating the domain model
under influence of DDD, makes it an iterative activity and
fitting to principles from agile development processes, such as
short time to market.

Complex domains automatically lead to a complex domain
model. This complexity makes it hard for readers to understand
the domain model. Due to that fact, it is necessary to split
the model into multiple diagrams [18], which enables the
modeler to model different aspects of the domain. Dynamic
behavior, such as workflows, are relevant concepts of the do-
main. We adapt the view approach from software architecture
[13] and introduced a concept named domain views to model
different behaviors. We have created various types of domain
views, such as an interactional view. They are motivated by
a stakeholder with an special concern, too. During knowledge
crunching, this predefinition makes it easy to choose the right
person to discuss with.

The result of exploring the domain is a domain model,
which contains relevant concepts of the domain, also called
the domain knowledge [4]. DDD emphasizes this as focus-
ing on the core domain that is relevant for the downstream
implementation of the application [4].

2) Design Prototyping: By knowledge crunching, we get
a complete understanding of the considered domain. The
application requirements are use case specific and indicators
for domain logic that has to be modeled in the domain model
accordingly. Each identified use case based on the discussion

with the stakeholders will be represented as part of a so-called
design prototype. A prototype is an efficient way for trying
out new design concepts and determine their efficiency [20].
The design prototype is a specialization and focuses on the UI
and the UX of the application. Since the customer primarily
interacts with the UI, it is also an ideal artifact for further
discussions with customers along the domain model. Further
benefits by using a prototype can be found in [20]. Similar to
knowledge crunching, design prototyping is an iterative activ-
ity. Each iteration consists of a brain storming regarding design
ideas with respect to given boundary conditions, realization of
the previously chosen design ideas, presentation and review of
the resulting design prototype. The feedback from the customer
as part of the review will be collected and analyzed to derive
the necessary design changes for the next iteration. The design
prototyping is finished when the prototype represents all of the
customer needs.

D. Design Phase
Two activities take place during the design phase: Domain

and API Design. These activities require the domain model
and the UI/UX design created during the previous phase.
After the design phase, the domain model as well as the API
specification are ready to be implemented.

1) Domain Design: From Computational to Platform In-
dependent Model (PIM): An important idea of DDD is the
binding of the domain to the implementation [4]. The domain
model is the core artifact to achieve this goal in the domain
layer. During the analysis phase a computational independent
model, the information model as part of the domain model,
is created. Now, first, this model is separated into bounded
contexts and, second, these bounded contexts are extended and
refined, e.g., by applying design patterns to fulfill application
requirements. These activities are based on examples of Evans
and Vaughn [4] [17].

The organizational structure is used to decompose the
information model into bounded contexts. The task requires
experience and several iterations due to its importance [17],
[21]. The decomposition is tightly coupled to the division of
the development teams, each working on a bounded context
[1]. Thus, intermediate results are discussed with the domain
experts and other team members. The result is a context map,
showing the relations of the bounded contexts.

The next steps are mainly carried out by the development
team that is responsible for each bounded context. The goal
of the next activity is to refine and extend the domain model
according to the requirements of the applications. The UI/UX
design is the main source for the application requirements.

Probably, the domain objects in the information model
are already marked with stereotypes indicating their type, i.e.,
aggregate root, value object, entity or domain event. Even some
services might be identified during the analysis phase. Domain
objects missing a stereotype should be treated first; a stereotype
should be added. Next, the design patterns repository, factory
and domain service are added according to the requirements.
For example, if there is functionality needing to display a
domain object in the UI, a repository is added, or if there is a
complex aggregate root, a factory might be added [4]. During
the whole design process, the domain experts and other sources
of information are involved (continuous knowledge crunching).

After applying the design patterns, the domain model is ready
to get implemented.

2) API Design: Deriving the Web API from PIM: Microser-
vices expose their implemented business functionality via web
APIs [1]. A web API can be seen as a specialization of an
traditional API, which is why, we extend the definition by
Gebhart et. al a bit further: “a contract prescribing how to
interact with the underlying system [over the Web],” [22, p.
139]. From business perspective, a web API can be seen as a
highly valuable business asset [7], [23] that can also serve as
a solution for digital transformation [22].

A web API can be used for composing microservices to
map a complex business workflow onto the area of microser-
vices or offering business functionality for third-party devel-
opers [22]. To facilitate the reuse and discovery of existing
functionality in form of microservices, the exposed web APIs
have to be designed with care. According to Newman [1],
Jacobsen [23] and Mulloy [24], web APIs should adhere to the
following informal quality criteria: 1) Easy to understand, learn
and use from a service consumer point of view, 2) Abstracted
from a specific technology, 3) Consistent in look and feel and
4) Robust in terms of its evolution.

To overcome these challenges, we have to form a sys-
tematic approach on how to derive the web API from the
underlying domain model. First, we have made the decision to
build web APIs in a resource-oriented manner that can be po-
sitioned on the second level of the Richardson Maturity Model
[25]. We do not pursue the hypermedia approach by Fielding
[26] to reduce the complexity when building microservice-
based applications. Second, we have identified resources and
sub resources from the underlying PIM by looking at the
relationship between the domain objects. Third, we have
derived the required HTTP methods as well as their request and
response representations from the interactional view as one of
the mentioned domain views (see Section III-C1). Besides this,
we have also developed a set of guidelines to support architects
and developers by fulfilling the previously described informal
criteria web APIs. These guidelines were derived from existing
best practices by designing resource oriented web APIs [27].
The result of this design work is finally structured according
to OpenAPI specification, which has the goal to “define a
standard, language-agnostic interface to REST APIs which
allows both humans and computers to discover and understand
the capabilities of the service without access to source code,
documentation, or through network traffic inspection.,” [28].

3) API Design: Deriving the Web API for BFF from Design
Prototyp: A BFF is a common pattern to avoid so-called chatty
APIs [1]. Chatty APIs often result in a huge amount of requests
for the service consumer to get the needed information [24,
p. 30f]. This is mainly due the fact that the needed domain
information or logic is spread over multiple microservices
and primarily designed for reusability rather than a specific
use case in form of a concrete application. Besides, BFFs
allow a development team to focus on the UI and UX spe-
cific requirements of an application by not restricting them
on the exposed web APIs of the microservices. Additional
and necessary application logic, such as data transformation,
caching or orchestration can be implemented on the BFF level
or application layer according to DDD [4]. That is why, the
BFF can be seen as part of the UI [1].

In our approach, the UI and UX specific requirements
are represented through a design prototype as a result of
a conducted analysis phase (see Section III-C2). Similar to
Section III-D2, we have decided to go with a resource-oriented
style for the BFF web API and applied the same web API
guidelines. Other solutions such as a method-oriented approach
is also possible. For deriving the web API, we are looking at
each view regarding the represented information as well as
the interaction elements that cause data manipulations. This
allows us to build resources, their representations as well
as their needed operations. The resulting web API is highly
coupled with the UI and now needs to be connected with
the underlying domain represented by microservices. Since the
domain model, as well as the design prototype are designed
by using the Ubiquitous Language, the required microservices
can be identified with minimal effort and orchestrated on the
application layer to fulfill the requirements specified by the
derived BFF web API.

E. Implementation and Testing
The domain model and web API specification enable the

development team to implement the application. In this section,
the implementation and testing of the microservices is intro-
duced. We do not discuss the implementation of the UI/UX
design, as we focus on DDD and building microservices.
But, the implementation and testing of the BFF, being the
connection between front end and microservices, is discussed.

First, we focus on implementing and testing the microser-
vices. Each bounded context is implemented as an microser-
vice using the specified API. A development project, e.g., a
maven project including source code, is created and pushed
into the version control repository. We recommend to offer the
API specification as part of the microservice. It is added to the
repository and delivered through its web interface. This way,
changes to the API can be pushed to the repository together
with their implementation. DDD highly recommends to use
continuous integration [4], thus, the continuous integration
pipeline is configured, too.

Venon [17] describes how to implement REST resources
separating the application from the domain layer. The web
API describes entry points to the microservice; it can be
implemented straight forward. The logic at the entry points
should be application specific in order to separate application
specific parts from domain specific, e.g., the usage of REST.
Thus, a microservice should have an application layer on top.
Typically, this layer is implemented as an anti corruption layer;
a design pattern to achieve a clean separation of application
and domain terms [17]. Additionally, by preventing the use of
domain objects as input parameters, the coupling of domain
objects and web API is reduced. Thus, some minor changes
in the domain model do not influence the implementation of
the interface [17].

The domain layer is implemented according to the domain
model. Thus, the domain objects in the bounded context are
mapped to classes, when using an object-oriented program-
ming language. Constraints, such as multiplicities, and domain
logic is implemented in the domain object. If a domain object
from another microservice is used, a reference to the object is
saved, e.g., by using the identifier [17], [29]. Implemented do-
main objects are intelligent objects that ensure the constraints
in the domain. The application layer should never have access

to domain objects, that do not comply with the constraints.
Development approaches, such as test-driven development [30]
or even behavior-driven development [31] are a good choice
in order to achieve this goal. These constraints might be
distributed among the domain model, thus, constraints might
be overseen. Separating tester and developer of functionality,
pair-programming as well as reviews can help to overcome this
problem.

Beside of the application and domain layer, the infrastruc-
ture layer is part of the microservice. This layer contains func-
tionality to access databases, log events, enforce authorization,
cache results, discover services etc.; everything supporting the
application and domain layer. Apparent is the support for
domain repositories. If a microservice has a repository, the
infrastructure layer must offer access to a database.

Last, we discuss the implementation of the UI’s backend.
The backend is an application of the BFF pattern. Therefore,
a main goal is to offer a facade hiding the microservice
architecture. The implementation can be kept simple. Its web
API is implemented according to the specification. In our case,
the specification is oriented on the microservice web API
specification, thus, the request can be directly forwarded to
the microservice. Depending on the specification, the frontend
supports further functionality, e.g., authentication and access
control may be implemented in the UI’s backend.

IV. CASE STUDY: THESIS ADMINISTRATION

In our case study, we were attempting a modernization
of the thesis administration within the KIT department of
informatics at Karlsruhe Institute of Technology. Our goal
was to create an application based on microservices and
to provide it to the university through the service-oriented
platform SmartCampus [32] that we develop in our research
group. For project execution, we chose Scrum as our software
development process.

A. Crunching the Information Model
In relation to the presented approach, we started eliciting

the domain knowledge with knowledge crunching. When we
found the domain experts - members of the Main Examination
Committee -, we started to discuss the domain. Quickly we
noticed that the thesis is one of the main concepts of the
domain. Thus, we explored the thesis by interviewing domain
experts at first. Besides the concepts and relationships of the
thesis, we also noticed constraints, which we included in the
information model. Figure 4 shows a piece of our crunched
information model. We put the Thesis in the middle of the
model to reflect the central position within the core domain.

Figure 4. Piece of the information model showing concepts of the thesis
domain object

Deeper discussions about the thesis told us somewhat about
states that a thesis can occupy. At this point, we took into
account the approach of domain views. We modeled a finite
automaton to determine our understanding and discuss it with
the domain expert, as shown in Figure 5. The diagram supports
the understanding without using UML typical elements.

Figure 5. Finite automaton sketches the possible thesis states

After discussions with the domain experts, we had our
desired information model and were able to transform it into
a PIM.

B. Creating the Design Prototype
Besides crunching the information model, we started the

design prototyping and sketched each identified use case.
In Figure 6 we illustrate an information page of a specific
thesis. This prototype was used to validate the elicited domain
knowledge.

Figure 6. Design mockup (in early phase) for visualizing details about a
thesis

C. Enriching the Information Model
After eliciting the domain knowledge and creating a design

prototype, we were able to enrich our information model with
implementation details. Mainly we focused on using the DDD
patterns such as Bounded Context, Entities, Value Objects
or Repositories [4]. At first, we structured the domain into
bounded context according to Conway’s Law [5] and, thus,
divide the thesis administration domain into microservices.
Then we could create the context map by the composition
of the bounded contexts (see Figure 7).

Afterward, we started to identified entities, value objects
and made a decision about persistence within our intended
application through repositories. We oriented ourselves to the
requirements of the application when applying the patterns.
For example, we decided that the domain object ”Student” in
Figure 8 did not need a repository because it does not need to
be globally accessible.

Figure 7. Context map composing bounded contexts of the thesis
administration domain

Figure 8. Thesis specific piece of the domain model including DDD patterns

D. Design and Implementation of the API Specification
The API specification was designed according to the do-

main model and UI/UX design. Figure 9 shows how to access
a single thesis resource and its attributes. The attributes are
mainly influenced by the information modeled in the design
prototype.

Figure 9. OpenAPI specification of getting single thesis displayed with
SwaggerUI

During the implementation phase, the domain objects in
the bounded context were mapped to the source code. We used
Java and the Spring Framework, which supported to focus on
the domain layer. Spring is implemented having the concepts of
DDD in mind. We separated the application and domain layers
into different packages. We did not need an infrastructure layer,
because Spring Data directly supports repositories through spe-

cialization. The database can be configured using configuration
files. The entry point to the application is a Spring Controller.
Several annotations helped to map HTTP requests to methods.
Even more annotations enable the use of dependency injection,
so that we could depend on repository interfaces while spring
injected their implementation. The development team added
sequence diagrams to model the interaction of the controllers.
This is also due to a lack of experience.

E. Synergy between Approach and Scrum

It turned out that our presented approach complements
itself well with Scrum. During each activity we did, we always
had the Scrum artefacts in mind and tried to create them
directly. Also the iterative approach from Scrum fit well to
our executed activities. This corresponds to the principle of
exploration and experimentation presented by Eric Evans in
DDD [4].

Through the combination of information model and design
prototypes, we could easily fill the Product Backlog. Also we
were able to extract the user stories and their task within to
create the Sprint Backlog from the PIM and API Specification.
After each Sprint, we could adjust the PIM, transfer the
changes into the Product Backlog and start a new Sprint.

V. LIMITATIONS

The activities we introduced provide an overview of the
activities that take place when applying DDD in building
microservice-based applications. These activities represent a
first step towards a complete process that includes all of the
required artifacts. Our research indicated that several topics
require further investigation and more detailed descriptions;
for example, it is quite difficult to systematize the design of
the domain model according to DDD. Best practices could be
identified and added to the process description to support the
performance of this activity.

During the case study, we received useful feedback from
the software development team. In Section III-A on classi-
fication, we discussed concerns regarding the specification
that are not covered by the artifacts. We used the UI/UX
design in addition to DDD and the microservice approach
to provide the missing specification in the user interface
and application layers; however, the development team still
had problems implementing the functionality in the applica-
tion layer. To address these problems, they added additional
sequence diagrams that specified the usage of the domain
layer within a microservice. It is likely, that there are more
specification artifacts that must be identified, as, using the
Spring framework, which supports developers in several ways,
much of the application and infrastructure layer source code
is supplied, which makes specification unnecessary.

While discussing the implementation process and testing
activities, we noted that the implementation of a domain model
created according to DDD is (slightly) bound to object-oriented
programming languages. This is due to the fact that the
concepts and diagrams introduced in [4] have object-oriented
programming in mind. The use of a functional programming
language might require a different set of patterns and diagrams;
as such, the process identified in this article is also somewhat
bound to implementation using an object-oriented language.

VI. CONCLUSION AND FUTURE WORK

DDD offers key concepts and activities to build applica-
tions based on a microservice architecture, whereby the activ-
ities are missing links to existing software engineering knowl-
edge. We classified both into software architecture concepts
and software development activities. Further, we introduced an
overview of software development activities and artifacts for
building microservice-based applications, which extend DDD.
In a case study, we showed the application of the activities
in an agile software development process to build a thesis
management applications as part of the SmartCampus and gave
examples of the resulting artifacts. The overview of activities
and their classification is a first step towards a complete
process for developing such web applications and, thus, we
described its limitations and missing artifacts.

DDD is about focusing on the domain including its con-
cepts, their relationships and business logic. Microservice ar-
chitecture is about arranging and dividing distributed software
building blocks. We showed missing requirement specifications
and missing artifacts with our classification and the case
study. We will further refine the activities towards a software
development process to identify a sufficient set of artifacts.

A major advantage of DDD and microservices is the
reuse of existing functionality. Identity and access management
is a domain (almost) each application needs, thus, we will
investigate in building a knowledge repository and enriching
the activities and artifacts so that models and functionality in
this domain can be reused among applications. In addition to
this research topic, we will continue to focus on how we can
systematically derive web APIs for microservices with quality
aspects in mind such as evolvability. The web API also plays
a significant role in discovering and reusing microservices in
the context of a microservice landscape.

ACKNOWLEDGMENT

We are very thankful to Pascal Burkhardt for his contri-
butions, both through discussions and the input he provided
regarding his projects, as well as to Philip Hoyer for providing
his opinions during our discussions. Furthermore, we would
like to thank the following members of the development team
and domain experts for participating in the case study: Florian
BReuer, Lukas Bach, Anne Sielemann, Johanna Thiemich,
Rainer Schlund, Niko Benkler, Adis Heric, Pablo Castro,
Mark Pollmann, Iona Gheta, Johannes Theuerkorn and David
Schneiter.

REFERENCES

[1] S. Newman, Building Microservices, 1st ed. O’Reilly Media, Inc.,
2015.

[2] M. Richards, Microservices vs. service-oriented architecture. O’Reilly
Media, Inc., 2015.

[3] T. Erl, SOA Principles of Service Design (The Prentice Hall Service-
Oriented Computing Series from Thomas Erl). Upper Saddle River,
NJ, USA: Prentice Hall PTR, 2007.

[4] E. Evans, Domain-driven design: tackling complexity in the heart of
software. Addison-Wesley Professional, 2003.

[5] M. E. Conway, “How do committees invent,” Datamation, vol. 14, no. 4,
1968, pp. 28–31.

[6] E. Landre, H. Wesenberg, and H. Rønneberg, “Architectural improve-
ment by use of strategic level domain-driven design,” in Companion to
the 21st ACM SIGPLAN Symposium on Object-oriented Programming
Systems, Languages, and Applications, ser. OOPSLA ’06. ACM,
2006, pp. 809–814, URL: http://doi.acm.org/10.1145/1176617.1176728
[retrieved: 2017-03-03].

[7] B. Iyer and M. Subramaniam, “The Strategic Value of APIs,” Jan-
uary 2015, URL: https://hbr.org/2015/01/the-strategic-value-of-apis [re-
trieved: 2017-03-03].

[8] D. C. Schmidt, “Model-driven engineering,” COMPUTER-IEEE COM-
PUTER SOCIETY-, vol. 39, no. 2, 2006, p. 25.

[9] A. G. Kleppe, J. Warmer, W. Bast, and M. Explained, “The model
driven architecture: practice and promise,” 2003.

[10] B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering
Using UML, Patterns and Java-(Required). Prentice Hall, 2004.

[11] I. Jacobson, G. Booch, and J. Rumbaugh, The unified software devel-
opment process. Addison-wesley Reading, 1999, vol. 1.

[12] G. Fairbanks, Just enough software architecture: a risk-driven approach.
Marshall & Brainerd, 2010.

[13] O. Vogel, I. Arnold, A. Chughtai, and T. Kehrer, Software Architecture:
A Comprehensive Framework and Guide for Practitioners. Springer
Berlin Heidelberg, 2011, URL: http://dx.doi.org/10.1007/978-3-642-
19736-9 [retrieved: 2017-03-03].

[14] I. A. W. Group et al., “Ieee recommended practice for architectural
description,” IEEE Std, vol. 1471, 1998.

[15] N. Alshuqayran, N. Ali, and R. Evans, “A systematic mapping study in
microservice architecture,” in Service-Oriented Computing and Appli-
cations (SOCA), 2016 IEEE 9th International Conference on. IEEE,
2016, pp. 44–51.

[16] C. Pahl and P. Jamshidi, “Microservices: A systematic mapping study,”
in Proceedings of the 6th International Conference on Cloud Computing
and Services Science, 2016, pp. 137–146.

[17] V. Vernon, Implementing domain-driven design. Addison-Wesley,
2013.

[18] S. Millett, Patterns, Principles and Practices of Domain-Driven Design.
John Wiley & Sons, 2015.

[19] Y. T. Lee, “Information modeling: From design to implementation,” in
Proceedings of the second world manufacturing congress. Citeseer,
1999, pp. 315–321.

[20] J. Arnowitz, M. Arent, and N. Berger, Effective Prototyping for Soft-
ware Makers. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2006.

[21] E. Evans, “Tackling complexity in the heart of software,” January 2016,
domain-Driven Design Europe 2016, URL: https://hbr.org/2015/01/the-
strategic-value-of-apis [retrieved: 2017-03-03].

[22] M. Gebhart, P. Giessler, and S. Abeck, “Challenges of the digital
transformation in software engineering,” ICSEA 2016 : The Eleventh
International Conference on Software Engineering Advances, 2016, pp.
136–141.

[23] D. Jacobson, G. Brail, and D. Woods, APIs: A Strategy Guide. O’Reilly
Media, Inc., 2011.

[24] B. Mulloy, “Web API Design - Crafting Inter-
faces that Developers Love,” March 2012, URL:
http://pages.apigee.com/rs/apigee/images/api-design-ebook-2012-
03.pdf [retrieved: 2017-03-03].

[25] J. Webber, S. Parastatidis, and I. Robinson, REST in Practice: Hyper-
media and Systems Architecture, 1st ed. O’Reilly Media, Inc., 2010.

[26] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

[27] P. Giessler, M. Gebhart, D. Sarancin, R. Steinegger, and
S. Abeck, “Best Practices for the Design of RESTful web
Services,” International Conferences of Software Advances
(ICSEA), 2015, URL: http://www.thinkmind.org/download.php?
articleid=icsea 2015 15 10 10016 [retrieved: 2017-03-03].

[28] OpenAPI, “The OpenAPI Specification (fka The Swagger Specifica-
tion),” 2017, URL: https://github.com/OAI/OpenAPI-Specification [re-
trieved: 2017-03-03].

[29] O. Gierke, “DDD & REST - Domain Driven APIs for
the Web,” November 2016, SpringOne Platform, URL:
https://www.infoq.com/presentations/ddd-rest [retrieved: 2017-03-
03].

[30] K. Beck, Test-driven development: by example. Addison-Wesley
Professional, 2003.

[31] D. North, “Behavior modification: The evolution of behavior-driven
development,” Better Software, vol. 8, no. 3, 2006.

[32] R. Steinegger, J. Schäfer, M. Vogler, and S. Abeck, “Attack surface
reduction for web services based on authorization patterns,” The Eighth
International Conference on Emerging Security Information, Systems
and Technologies (SECURWARE 2014), 2014, pp. 194–201.

