
Designing Microservice-Based Applications by

Using a Domain-Driven Design Approach

Benjamin Hippchen, Pascal Giessler, Roland Heinz Steinegger,
Michael Schneider and Sebastian Abeck

Research Group Cooperation & Management (C&M)
Karlsruhe Institute of Technology (KIT)

Zirkel 2, 76131 Karlsruhe, Germany
(benjamin.hippchen | pascal.giessler | steinegger | abeck)@kit.edu,

michael.schneider5@student.kit.edu

Abstract—The current trend of building web applications using
microservice architectures is based on the domain-driven design
concept. Among practitioners, domain-driven design is a widely
accepted approach to building applications. Applying and extend-
ing the concepts and tasks of domain-driven design is challenging
because it lacks a software development process description and
classification within existing software development process ap-
proaches. For these reasons, this paper provides a brief overview
of domain-driven design-based software development activities
and their classification into a well-known software development
process.

Keywords–Domain-driven design; behavior-driven development;
domain model; microservices; API;

I. INTRODUCTION

This article is an extended version of [1], which was
published at SOFTENG 2017. Our former article presents an
overview of activities for building microservice-based appli-
cations by using a domain-driven design (DDD) approach.
In addition, we discuss the elicitation of requirements, align
the hexagonal architecture for microservices into the field of
software architecture and discuss testing and implementing
the different layers of microservices. By considering appli-
cation requirements, we tackle limitations described in our
previous article. Microservice architectures have evolved into
a popular method for building multiplatform applications over
the past few years. A well-known example is Netflix, who
offers applications for several platforms, including mobile
devices, smart TVs and gaming consoles [2]. Service-oriented
architectures are the foundation of microservice architectures,
but microservices have unique properties [3]. A microservice
is autonomous and provides a limited set of (business) func-
tions. In service-oriented architectures, designing services and
selecting boundaries are fundamental problems.

The traditional approach, as discussed by Erl [4], suggests
a technical and functional separation of services. In contrast,
according to Evans [5], DDD provides the key concepts
required to compartmentalize microservices [2]. The DDD
approach provides a means of representing the real world
in the architecture, for instance, by using bounded contexts
representing organizational units [6], and also identifies and
focuses on the core domain; both of these characteristics lead
to improved software architecture quality [7]. In microservice

architectures, these bounded contexts are used to arrange and
identify microservices [2]. Using DDD is a critical success
factor in building microservice-based applications [2].

When applying DDD to the development of microservice-
based applications, several problems may arise, depending on
the level of experience of the development team. Domain-
driven design offers principles, patterns, activities, and ex-
amples of how to build a domain model, which is its core
artifact. However, it neither provides a detailed and system-
atic development process for applying these principles and
patterns nor does it classify them into the field of software
engineering. Classifying the activities, introduced by DDD,
into the activities of a software development process could
improve the applicability. Further, the classification of the
patterns and principles into software architecture concepts,
such as architecture perspectives and its requirements, supports
software architects in designing microservice architectures.

In addition, there are no clear guidelines regarding how
to derive the basic web application programming interfaces
(web APIs) that act as a service contract between microservices
and the application. The importance of a service contract is
described by Erl [4]. From the business perspective, the web
APIs also have strategic value; therefore, the development team
must design it in a manner that emphasizes quality [8].

Furthermore, applications and, in particular, user interfaces,
are often not considered or only considered superficially
during the process of designing service-oriented architectures
[2][4]. However, the application can play a major role when
building the underlying microservices. Domain-driven design
emphasizes that the application is necessary to determine the
underlying domain logic of microservices; the user interface
is important to consider when designing specific web APIs for
the UI when using the backends for frontends (BFF) pattern
[2]. When designing microservices within the software-as-a-
service (SaaS) context, there is no graphical user interface;
instead, there is a technical one. The target group shifts from
end users to external companies or independent developers
who can benefit from the capabilities of the offered service. For
this reason, a web API has to be designed in such a manner
that it can map as many possible use cases for a particular
domain as possible. The resulting set of use cases represents
the requirements that must be handled by the web API and the

microservices.
We experienced these challenges when establishing a soft-

ware development process based on DDD to build SmartCam-
pus, a service-oriented web application. During the process
we could not find literature that addressed these problems.
Thus, we classify DDD activities within the field of software
engineering, arrange the components of a microservice-based
application according to the layers of DDD and describe the ac-
tivities necessary in building microservice-based applications.
We apply these activities in an agile software development
process used to build parts of the SmartCampus application and
discuss both the results and limitations. Further, we combined
the application of DDD with behavior-driven development
(BDD). The gap of the requirement specification on the
application level, which we discussed in our previous article,
is tackled through the “living documentation” [9]. So, DDD
provides the core of the application and BDD specifies the
access to it. BDD also helps to test the application from a
user’s point of view and to test the domain model at the same
time.

This article is structured as follows: In Section II, DDD,
BDD and microservice architecture, including a general intro-
duction to software architecture and development and other
related concepts, are introduced. Section III classifies DDD,
BDD and microservices and introduces the software develop-
ment activities required in building microservice-based appli-
cations according to the requirements of DDD. In the next
section, a case study demonstrates the application of these
activities within a software development process, including
artifacts. The limitations discovered while applying the activ-
ities are described in Section V. A conclusion regarding the
activities and possible future areas of inquiry is presented in
Section VI.

II. FOUNDATION AND RELATED WORK

This section provides an overview of model-driven engi-
neering (an approach that is similar to DDD), DDD itself,
traditional software engineering activities (which are used to
classify DDD activites), BDD for requirements elicitation,
software architecture in general (as the foundation being
the foundation for classifying microservice architecture) and
microservice architecture.

A. Model-Driven Engineering and Model-Driven Architecture
Schmidt [10] describes Model-Driven Engineering (MDE)

as an approach that is used to effectively express domains in
models. The Object Management Group (OMG) introduced
their framework model-driven architecture (MDA) [11] to
support the implementation of MDE. MDA identifies three
steps necessary in moving from the abstract design to the
implementation of an application. Three models are created
by carrying out these steps: 1) computation independent model
(CIM) provides domain concepts without taking technological
aspects into consideration, 2) platform independent model
(PIM) enriches the CIM with computational aspects; and 3)
platform specific model (PSM) enriches the PIM with the
aspects of implementation that are specific to a particular
technological platform.

Using a model-driven approach, models become the pri-
mary artifacts in the development of applications. Thus, a
clear understanding of the model and modeling language is

necessary for an effective use. Metamodels are used to define
the possibilities about what the model language can express
[12]. In case of the Unified Modeling Language (UML),
OMG defined the Meta-Object Facility (MOF) as the basis
for all metamodels [12]. Defining model languages with this
framework, a four-layer metamodeling architecture is applied:
1) M0 designates the real world object, that will be model, 2)
M1 denotes the model, which represents M0, 3) M2 defines a
metamodel for limiting the modeling possibilities from M1,
4) M3 represents the meta-metamodel, which specifies the
modeling language for metamodels. Since MDA is a model-
driven appraoch, it sticks to the four-layer architecture from
MOF.

B. Software Engineering Activities and Domain-Driven De-
sign

Brügge et al. [13] describe a widely accepted software
engineering approach in the context of object-orientation. We
use their concepts to classify the activities we identified to
build microservice-based applications using DDD. This object-
oriented approach works well when small teams build appli-
cations that span a several domains. [13] offers an overview
of the activities that take place during software development:
requirements elicitation, analysis, systems design, object de-
sign, implementation, and testing. (These activities are dis-
cussed further in the article’s introduction of the development
activities.)

DDD is an approach that is used in application development
where the domain model is the central artifact. Software
architects and developers use the domain model as main
source for software design and development. Furthermore,
DDD focuses on the business logic of the customer’s domain
and neglects technical aspects of the application. Evans in-
troduced this approach in the book “Domain-Driven Design:
Tackling Complexity in the Hearth of Software” and identified
the essential principles, activities, and patterns required when
using DDD [5].

A domain model that conforms to Evans’ DDD approach
contains everything that is necessary to understand the domain
[5]. This approach goes beyond the traditional understanding
of a domain model, which is connected to a formalized model
using the UML [14]. To distinguish between the two concepts,
following Fairbanks [15], we use the term information model
which corresponds to a CIM. It is a part of the domain model
and consists out of concepts, relationships, and constraints.
In order to support downstream implementation, Evans adds
implementation specific details to the model. The resulting
domain model corresponds to a PIM. In case of DDD, the
modeling language of the domain model is not specified by an
metamodel—like the CIM and PIM in MDA. A metamodel
would be contradictory to the “everything is allowed in the
domain model” philosophy of Evans. The comparison of the
domain model to a CIM and PIM only reflects the evolution
of the domain model and states nothing about the modeling
language. As a result, the systematic approach of MDA cannot
be applied to DDD’s domain models.

In Evans’ approach to DDD, the central principle is to align
the desired application with the domain model. The domain
model shapes the “ubiquitous language” that is used among
the team members and functions as a tool used to achieve this
goal.

C. Requirements Elicitation with Behavior-Driven Develop-
ment

The requirement elicitation activity described by Brügge
[13] could be carried out in various ways. With DDD, re-
quirements are gathered and stated in the domain model [5].
Regarding the layered architecture of DDD (see Section II-B),
just requirements of the domain layer are covered. So, there
is a lack of specifications for the other layers.

With BDD the requirement elicitation is carried out by
the developers and application users themselves [9]; there is a
difference between users and domain experts. BDD builds on
an informal and executable requirement specification for the
intended application. Both, users and developers, are exploring
the requirements of the application, sharpening their picture of
the application and establishing a shared understanding. The
idea of BDD is based on test-driven development (TDD) and
its automated acceptance tests [9], which determine the correct-
ness of the application [16]. Furthermore, BDD emphasizes the
understanding of the user’s domain. BDD uses the ubiquitous
language known from DDD [9].

The philosophy behind BDD is a requirement elicitation
from outside-in [9]. North characterizes “code-by-example” in
the context of BDD [17]. The most visible behavior is elicited
first; then it is implemented. During the implementation, new
details are discovered, which will also be stated as require-
ments. In BDD, requirements are stated as features, which are
further divided into scenarios [9]. The language Gherkin is
usually used to describe these artifacts formally. Each scenario
is written in common speech and is refined in steps. Each step
starts with a predefined (Gherkin) keyword, which is necessary
to execute the tests in later stages. Through the binding of
BDD features to implementation and testing activities, the
requirement specification must be kept up-to-date; it becomes
a “living documentation” [9].

D. Microservice Architectures
Vogel et al. provide a comprehensive framework for the

area of software architecture [18], which is used to classify
microservices and DDD. Their architecture framework has
six dimensions: 1) architectures and architecture disciplines,
2) architecture perspectives, 3) architecture requirements, 4)
architecture means, 5) organizations and individuals and 6)
architecture methods. The essential terms used in describing
an architecture are: systems, which consist of software and
hardware building blocks; a software building block can be
a functional, technical or platform building block. Building
blocks can also consist of other building blocks and may
require them. The authors also introduce the concept of ar-
chitecture views; their definition is influenced by the IEEE
[19]. Architecture views are part of the documentation that
describes the architecture. Each view is motivated by stake-
holders’ concerns. These concerns specify the viewpoints on
the architecture and, thus, specify the views.

Newman provides a comprehensive overview of microser-
vices and related topics from an industry perspective [2].
He defines a microservice as a “small, autonomous service”
that does one thing well; and adds that the term “small”
is difficult to define. In contrast to services in a service-
oriented architecture according to Erl [4], the single purpose
principle results in microservices having similar sizes within an
architecture [3]. Two mapping studies regarding microservices

and microservice architecture reveal that a gap in the literature
regarding these topics exists [20][21].

Regarding the structure of a microservice based
application, Vernon introduces the hexagonal architecture
in the context of DDD [22]. Initially, the corresponding
architecture pattern was postulated by Cockburn in [23].
In the resulting architecture by applying this pattern, the
concerns of a microservice are separated into several
layers, see Figure 1. According to Cockburn, the hexagonal
architecture consists out of the domain model, application
services and adapters with ports. Each side of the hexagon
stands for a particular port, although, in practice, there
could be more than six distinct ports. Using these ports, the
microservice can upstream or downstream information with
clients. For consuming microservices, the client has to use
one of the exposed ports and its corresponding adapter. The
adapters work like an anti corruption layer. Highly relying on
the dependency inversion principle (DIP) from Martin [24],
the domain model as the core and hence the business logic
is independent of the surrounding application services and
adapters. The layer dependencies are applied from the outside
to inside. (Further relevant information is discussed during the
section of this article that classifies microservice architectures.)

Figure 1. The hexagonal architecture pattern from Cockburn [23]

III. PROCESS

This section classifies the activities involved in DDD
and concepts related to microservice architectures; further-
more, the software development activities involved in building
microservice-based applications using DDD are introduced.
The activities discussed can be applied to various software
process models. However, DDD requires that one constantly
scrutinizes and adjusts the understanding of the domain. Thus,
agile software development processes are most suitable.

A. Classification
We identify specifications, that are missing when just

applying DDD to build a microservice-based application, by
classifying DDD and microservice architecture using the soft-
ware architecture concepts of Vogel et al. [18]. We divide the
classification process into two parts: first, we discuss the archi-
tecture perspective and second the architecture requirements.

Concerning the architecture perspective, software
architecture can be divided into macro- and micro-architecture;
it can further be divided into organization, system and building
block level. The organization and system levels form the

macro-architecture whereas the building block level can be
assigned either to the macro or micro-architecture, depending
on what is required for the concrete architecture. [18]
Despite their names, microservice architecture and the domain
model describe the macro-architecture. A microservice is a
functional or technical software building block that requires
a platform to run on. Neither DDD nor microservices limit
the underlying platform. When using DDD, microservices are
structured according to the organizational units using bounded
contexts from the domain model [2][22]. The domain objects
within a bounded context specify the core architecture of a
microservice.

Figure 2. Software building blocks and their layers in a microservice-based
application

Domain-driven design requires a layered architecture to
separate the domain from other concerns [5]. Evans suggests
a four-layered architecture, consisting of the user interface,
application, domain, and infrastructure layers. Figure 2 shows
the distribution of these layers among the software building
blocks of microservice-based applications. On the highest ab-
straction level, microservice-based applications can be divided
into applications and microservices. The application consists
of a frontend, which is either thick or thin (meaning that
it contains application logic or not), and its backend, which
provides the application logic. The backend uses the microser-
vices to access the domain layer or general infrastructure
functionality. Each microservice has an application layer on
top. The application layer translates requests into either the
domain or infrastructure layers. Infrastructure logic may be part
of each software building block. In our approach, we applied
the layer distribution following Miller’s approach [25].

In a layered architecture, higher layers can communicate
with lower layers. Figure 3 depicts the layered architecture’s
communication paths applied to the above-mentioned software
building blocks [25]. The frontend should not directly call the
microservices; we emphasize this by using dashed arrows.

The layering from Figure 2 shows that the layering
introduced by DDD is also applied to the microservice
architecture. Going into the implementation of a microservice,
the sequence of the layers changes. The underlying structure
of the microservices is defined through the hexagonal
architecture pattern by Cockburn [23]. Having a more
accurate look at the building blocks of the microservices,
we are using an onion architecture introduced by Palermo

Figure 3. Communication between software building blocks

[26] with minimal adoptions as shown in Figure 4. The
onion architecture builds on the hexagonal architecture.
Vernon states that the hexagonal architecture and the onion
architecture are the same [22]. On the outer layer of the onion
architecture, we find the infrastructure as well as the exposed
interface as fine-grained building blocks. The infrastructure
part of the layer provides technical functionality for the
operation of the service such as database access. The exposed
user interfaces focuses on the provisioning of the underlying
business domain that can be used by clients for interaction.
Like in the hexagonal architecture, the adapter pattern is
used on this layer. In addition, the onion architecture adds
a new layer, the so-called domain services. Domain services
represent behavior that cannot be mapped to domain objects
[5][22]. For instance, this is the case if the behavior is spread
over multiple domain objects to form a business workflow.
This way, the domain services are tightly coupled with
the domain objects; together, they build the whole domain.
In [26], Palermo also puts the interface definition of the
repository on this layer. But, in our opinion, this approach
would mix the domain-specific layer with technical aspects.
That is why we add the so-called glue layer that acts as a link
layer between the application and domain. The from DDD
known repositories or factories are put into this layer. The
heart of the onion architecture is represented by the domain
objects.

Figure 4. Our adapted onion architecture based on Palermo [26]

The layered architecture is applied to the whole application
and divides it into horizontally-divided layers. Meanwhile,
the onion architecture is applied to the microservice building

blocks from Figure 3 and divides them in a vertical manner.
Going back to DDD, a microservice is defined through a single
bounded context in the customer’s domain [2]. Considering the
microservice architecture as an onion makes it more suitable
with the concept of bounded contexts. Every microservice has
to work autonomously, which is intended with the layering of
the onion architecture.

Concerning architecture requirements, the decision to build
microservice-based applications is taken at the organizational
level (see the classification of service-oriented applications in
[18]). Along with a microservice architecture, the organization
should choose a protocol that allows all of the microser-
vices within the organization to communicate; e.g., using
representational state transfer (REST) over hypertext transfer
protocol (HTTP) with a set of guidelines or an event bus. The
platform running the microservices (e.g., Docker), the database
technologies, the implementation of identity and access man-
agement etc. might also be organizational requirements; when
building a microservice architecture the software architects
have to decide, whether or not these concerns should be ho-
mogenous. We could not identify any requirements concerning
the system or building block levels that are based on DDD or
the microservice approach.

Some specification is still missing. The domain model
specifies the functional view on the domain but does not
consider technical aspects [5]. Thus, in addition to the domain
model, there is a need for artifacts that describe the mi-
croservice architecture, including technical microservices and
platform architecture. Furthermore, assuming that the domain
model describes the architecture of the domain layer, the user
interface, application, and infrastructure layer are not specified.
Translating this into the context of the software building
blocks, the frontend and backend may require specification.
The decision to add further artifacts could be based on the
risks involved in the application, as discussed by Fairbanks
[15]. In case of the application layer, we started using BDD
as an approach for eliciting requirements as features from the
application users. The features could also be used for testing
the domain layer. Further, we decided to add a user interface
(UI)/user experience (UX) design, which specifies both the
user interface and the user’s interaction. Thus, this artifact
specifies the frontend and backend.

B. Activity Overview

Next, we are introducing the activities involved in building
microservice-based applications. These activities facilitate
the development of applications within similar domains,
e.g., an application that offers information on points of
interest, an application navigating from and to points of
interest and an application that enables the management of
points of interest. We align our activities with the traditional
software development activities described by Brügge et al.
[13]. Therefore, the activities end after testing, and we do not
discuss deployment and/or maintenance. Artifacts associated
to deployment and maintenance, such as a deployment diagram
or a platform description, are not discussed. Figure 5 depicts
the three activities and their interrelations: requirements
elicitation and analysis, design and implementation and
testing.

Figure 5. Overview of the activities used in building microservice-based
applications

During the requirements elicitation and analysis, three sub-
activities take place: first, the application requirements are
stated in features with and from users by following the BDD
approach; second, the information model, as part of the domain
model, is created by “crunching knowledge” with domain
experts; third, a prototype is designed and is discussed with
both the user and customer. As all activities are closely related
(when discussing prototypes, the knowledge of the domain
gets deeper, when discovering the information model, terms
or workflows might change, and while eliciting requirements,
the goal of the application is sharpened), we combined them
into a single activity.

The design is comprised of the sub-activities involved in
designing the domain and the APIs of the microservices. Based
on the UI/UX design and further discussions with the domain
experts, the information model is refined, e.g., design decisions
are made, and design patterns from DDD are applied. Domain
design is comparable to the system design activity discussed by
Brügge et al. [13]. The system is divided into subsystems that,
according to Conway’s Law [6], can be realized by individual
teams using bounded contexts. Domain design results in a
domain model that must be bound to the implementation
artifacts. As the microservices offer access to the domain
model and translate from the application layer to the domain
layer, both the UI/UX design (representing the user interface
layer and the application layer) as well as the domain model
(representing the domain layer of DDD) are used to design the
web APIs of the microservices. If using a BFF, its web API
is designed, too. This activity can be assigned to the object
design activity discussed by Brügge et al. [13].

After this preliminary work, the microservices are imple-
mented and tested. The web APIs describe the microservices’
entry points. These entry points and their application logic are
implemented and tested, as the microservices’ domain model.
The features from the application analysis are used to test the
application. In particular, they are used to test the constraints
defined in the domain model, such as multiplicities or directed
associations.

The ubiquitous language is central to the use of DDD,
therefore, we introduced a glossary to capture the domain
terms. Each term of the ubiquitous language is listed and
described by a few sentences. We see the glossary as a cross-
sectional artifact. It is created and updated in each activity of
Figure 5. Maintaining the glossary takes effort, but the benefits
outweigh this effort.

Evans states that developing a “deep model”, with which

to facilitate software development requires “exploration and
experimentation” [5]. Thus, in order to gain insights into
the domain across the whole software development activities,
software developers must be open-minded. The knowledge
gained will probably lead to changes being made to the
artifacts created in the previous phases. Therefore, a process of
iteration and returning to previous phases is possible in each
phase; in other words, it is very common for developers to
switch between phases and activities. Of course, experienced
developers may make fewer mistakes and discover insights
earlier, but hidden knowledge and misunderstandings are com-
mon. In the following sections, the phases are explained in
more detail.

C. Requirements Elicitation and Analysis
The first activity deals with the understanding of the appli-

cation and the needs of the users. Three non-chronological or-
dered activities take place in this phase, namely the analysis of
the application, exploration of the domain and the design of a
prototype. These activities influence each other to a significant
degree; terms from the application features and the domain
model are used in the prototype, while new insights may result
in changes being made to them. We see a strong connection
between the process of eliciting the application requirements,
developing the domain model and design prototyping that
arise due to the specifications that are not captured during the
domain modeling process. Every domain concept displayed in
the design prototype must be modeled in the domain model
and vice versa. In addition, the domain concepts must be used
by the application features. Small iterations during the analysis
phase are required to ensure that all artifacts are consistent.

1) Application Analysis: Specifying the Application with
BDD: The functionality of the application depends on the
needs of the user. Therefore, we see a comprehensive require-
ment elicitation with the users. By applying BDD to elicit
requirements, the users are fully involved [9]. Requirements
are stated in features (see Section II-C) and scenarios. Each
feature is created by developers, users or both. A developer
explores the intended application while discussing and creating
features with users. BDD also emphasizes that users are able to
create features on their own. Both, developer and user, features
have to be considered equal for the implementation activity.
This activity is resulting into a comprehensive requirement
specification, which is executable for automated application
testing. Regarding the layered architecture from DDD, the
application layer from our intended application is specified.

By using BDD, our approach starts with the creation of
features by the developers and users. Both are discussing
and simultaneously creating the features. We noticed an im-
provement in quality and accuracy, if developers and users
are collaborating during feature creation. BDD emphasizes an
“outside-in” approach for the elicitation of application require-
ments [9]. The most visible behavior is stated as a feature and
implemented subsequently. During implementation, developers
will discover more details, which have to be discussed with the
users. Either an existing feature is adjusted or a new feature
is created. Afterward, the features are implemented step-by-
step. North calls this “code-by-example” in a presentation at
London’s QCon 2009 [17].

During discussions and feature-writing, the synergy with
DDD gets visible. The ubiquitous language is established and

sharpened while talking about the features. Developers get
insights about the relevant domain concepts. In addition, BDD
emphasizes a “living documentation”, which is achieved by the
strong binding of features, implementation and testing [9][27].
This living documentation requires a continuous adoption
of features; they need to be up-to-date in every phase of
the project. The living documentation leads to a meaningful
requirement specification.

The application analysis using BDD is resulting into a
requirement specification, which consists of informal features
and scenarios. The informal character makes it possible for
users and developers to validate the correctness. The “for
everybody” readable features provide an up-to-date source
of knowledge, which enables that the functionality is imple-
mented properly and works as intended. Developers can use
the features as guidance during the implementation and as a
main artifact for writing tests.

2) Domain Analysis: Exploring the Domain with DDD:
Without a complete understanding of the domain, building
applications that satisfy the requirements is difficult. In our
approach, we focus on Evans‘ book “Domain-Driven Design:
Tackling Complexity in the Heart of Software” in order to
understand the needs and, thus, the domain through modeling
[5]. Creating a comprehensive domain model in this phase
even requires experienced domain modelers to acquire new
knowledge. After this activity, we are left with a domain model
that is the equivalent of an information model (see Section
II-B). UML class diagram syntax is used to describe concepts
and their relationships, constraints, etc. [15][28]. Also, this
information model corresponds to a CIM. CIM is well known
from the MDA [29][30].

According to DDD, collaboration with customers is essen-
tial to the exploration process and, in particular, the modeling
of the domain. Thus, the permanently recurring activity, in
DDD is knowledge crunching [5]. The development team si-
multaneously holds discussions with customers while carrying
out the modeling process and creating the domain model.
Conforming to the pattern Hands-On Modelers, every team
member involved in the software development process should
also participate in the domain-modeling process in order to
promote creativity [5]. In addition, the “ubiquitous language”
is established, which is the cross-team language. As Vernon
[22] suggests, we create a glossary to record the terms of the
domain that are part of ubiquitios language. The process, by
which the domain model is developed, is influenced to a great
degree by exploration and experimentation [5]. It is far better to
implement a domain model that is not completly satisfactory
than to repeatedly refine the domain model without actually
implementing it [5]. Using the DDD approach requires an
iterative process that takes into account principles taken from
the agile development processes, such as short time to market.
Especially the domain model needs to be adapted iteratively.

Complex domains automatically lead to a complex domain
model; this complexity may make it difficult for readers to
understand the domain model. As a result, it is necessary to
split the model into multiple diagrams [25], which enables the
modeler to model different aspects of the domain. Dynamic
behaviors, such as workflows, are concepts that are relevant
to the domain. We adopted the architectural view concept (see
Section III-A) from software architecture [18] by introducing
“domain views”, which guides the modeler to model different

aspects of the domain. The concept is designed to split the
domain model into multiple diagrams. Furthermore, it simpli-
fies and structures the modeling activity. We see the need for
a more guided modeling activity to support less experienced
modelers.

Figure 6 displays the building blocks of the domain
view concept and their relations. DDD is always based on
an application and each artifact is aligned with the desired
functionalities. Thus, the domain model belongs to the
application and is only valid for the specific application. The
domain model consists of mulitple domain views, which
contains the domain objects. A domain view is assigned
to a specific domain view type. This domain view type
is used to determine the domain objects and identify the
possible representation with UML diagrams. A type of a
domain view is specified through one or more stakeholders.
Each stakeholder describes the system from their respective
viewpoints; stakeholders have one or more interests. Evans
states, that for representing domain knowledge every possible
diagram is allowed for modeling the domain model as long
as it is supporting the understanding of the domain concept
[5]. In our approach, we limited the possible representations
with a set of UML diagrams. Each domain view type has its
own set.

Figure 6. Building blocks of the domain view concept

We created two domain view types. First, the “relation
view” models domain objects and their real world relationships
with each other. This domain view type addresses the static
behavior of the domain. Second, the “process view” represents
the dynamic behavior of the domain. Domain objects and
interactions are used to model processes of the domain.

The relation between the interest of a stakeholder and
domain view type (see Figure 6) makes it possible to determine
the right persons for the discussion of the domain view
contents. Thus, during knowledge crunching, we were able
to identify modelers and domain experts. Stakeholders have
different interests and affect the structure of the domain view
content. In addition to the domain expert, we defined develop-
ers, software architects, security architects and API designers
as stakeholders. The API designer as a stakeholder emphasizes
the development of microservice-based applications.

The result of exploring the domain is a domain model,
which contains concepts that are relevant to the application
(also called the “domain knowledge”) [5]. Domain-driven
design emphasizes the focus on the core domain. Implementing

this domain has the highest priority [5]; the best developers are
assigned.

3) Design Prototyping: By means of knowledge crunching,
we obtain a complete understanding of the domain considered.
The requirements of an application are use case-specific and
function as indicators of the domain logic that must be modeled
in the domain model. Based on BDD and the discussion with
the stakeholders, each identified feature will be represented
in the so-called design prototype. A prototype is an efficient
means of testing new design concepts and determining their
efficiency [31]. The design prototype is specialized, as it
focuses on the application’s UI and the UX. Since the customer
primarily interacts with the UI, it is also an ideal artifact
for further discussions with customers regarding the domain
model. Further benefits of using a prototype can be found in
[31]. Similarly to knowledge crunching, design prototyping is
an iterative activity. Each iteration involves a brain-storming
session that focuses on design ideas, taking into account the
given boundary conditions, realization of the previously chosen
design ideas and presentation and review of the resulting
design prototype. As part of the review process, feedback from
the customer will be collected and analyzed in order to identify
the design changes necessary for the next iteration. The design
prototyping process is completed when the prototype satisfies
all of the customer’s needs.

D. Design Phase
Two activities take place during the design phase: domain

and API design. These activities require the domain model
and the UI/UX design created during the previous phase.
After the design phase, both the domain model and the API
specifications will be ready to implement.

1) Domain Design: From Computational to PIM: An im-
portant DDD concept is the binding of the domain to the
process of implementation [5]. The domain model is the core
artifact required in achieving this domain-layer goal. During
the analysis phase, a CIM is created as a part of the domain
model. First, this model is divided into bounded contexts,
and, second, these bounded contexts are extended and refined,
e.g., by applying design patterns to satisfy the application’s
requirements. These activities were based on the examples
provided by Evans and Vernon [5][22].

The organizational structure is used to divide the infor-
mation model into bounded contexts. Due to its importance,
this task requires experience and several iterations [22][32].
The process of division is closely linked to the division of the
development teams, as each works on a bounded context [2].
Thus, intermediate results should be discussed with the domain
experts and other team members. The result is a context map
that depicts the relationship between the bounded contexts.

The next steps are mainly carried out by the development
teams that are responsible for each bounded context. The
goal of the next activity is to refine and extend the domain
model according to the application’s requirements. Both BDD
features and UI/UX design are the main source considered
when it comes to determining the application’s requirements.

In all likelihood, the domain objects in the information
model will already be marked with stereotypes that indicate
their type, e.g., aggregate root, value object, entity or domain
event. Some services might be identified during the analysis

phase. Domain objects that lack a stereotype should be ad-
dressed first, meaning that a stereotype should be added. Next,
the design patterns repository, factory and domain service
are added according to the application’s requirements. For
example, if there is a need to display a domain object in the UI,
a repository may be added, or, if there is a complex aggregate
root, a factory could be added [5]. During the entire design
process, the domain experts and other sources of information
should be involved (this is referred to continuous knowledge
crunching). After applying the design patterns, the domain
model is ready to be implemented.

2) API Design: Deriving the Web API from the PIM:
Microservices provide their implemented business functions
via web APIs [2]. A web API can be seen as a specialization
of a traditional API, which is why we extend the definition
offered by Gebhart et al. slightly further: an API is “a contract
prescribing how to interact with the underlying system [over
the Web],” [33, p. 139]. From a business perspective, a web
API can be seen as a highly valuable asset [8][34] that can
also serve as a solution for digital transformation [33].

A web API can be used to coordinate microservices in
the mapping of a complex business workflow onto the area
of microservices or to offer business functionality to third-
party developers [33]. To facilitate the reuse and discovery of
existing microservice functions, the exposed web APIs should
be designed with care. According to Newman [2], Jacobsen
[34] and Mulloy [35], web APIs should adhere to the following
informal quality criteria: 1) they should be easy to understand,
learn and use from a service consumer’s point of view, 2)
they should be abstracted from a particular technology, 3) they
should be consistent in look and feel and 4) they should be
robust in terms of evolution.

To address these challenges, it is necessary to develop
a systematic approach for deriving the web API from its
underlying domain model. First, we decided to build web APIs
in a resource-oriented manner that can be positioned on the
second level of the Richardson maturity model [36]; we do
not pursue the hypermedia approach suggested by Fielding
[37] to reduce complexity when building microservice-based
applications. Second, we have identified resources and sub-
resources from the underlying PIM by examining the rela-
tionships between the domain objects. For the identification,
we have created heuristics based on a UML class diagram
that allows us to derive resource candidates systematically.
The derived resources are then categorized in different types
of resources according to Tilkov [38] and Rathod et al. [39].
Based on the resulting categorized set of resources, we have
added URIs so that each resource can be addressed over
the web without ambiguity. For the URI structure, we have
followed several conventions to improve the discoverability
and ensure the consistency in the context of our microservice
landscape. The used conventions are listed as linguistic pat-
terns and established best practices in this area [40]. Afterward,
we have investigated the possible interactions of each of the
identified resource types regarding their life cycle and mapped
them subsequently to the modeled behavior of the domain. In
addition, the interactions that will be exposed by the web API
has to be also aligned with the BDD features, domain model,
and UI/UX design; that is why the domain views (see Section
III-C2) play a significant role. Nonetheless, the interactions
should not be limited to the different use cases to ensure a high

reusability. This fact is of particular importance when choosing
an appropriate API strategy. Up to this point, we have made
no technology decisions; the resulting model can be seen as a
PIM. With the selection of an appropriate application protocol
such as HTTP or Constrained Application Protocol (CoAP),
we transform the PIM to a PSM.

The result of this design approach was finally structured
according to the specifications of OpenAPI, which has the goal
of “defining a standard, language-agnostic interface to REST
APIs, which allows both humans and computers to discover
and understand the capabilities of the service without access
to source code, documentation, or through network traffic
inspection” [41]. In addition to this, we have extracted our
guidelines for designing resource-oriented APIs in the form of
a checklist in [40].

3) API Design: Deriving the Web API for BFF from the
Design Prototype: A BFF is a pattern that is commonly used
to avoid so-called chatty APIs [2]. Chatty APIs often result
in the service consumer having to make a large number of
requests in order to obtain the required information [35, p.
30f]. This is mainly due the fact that the domain information
or logic required is spread over multiple microservices and
primarily designed for reusability, rather than a specific use
case in the form of a concrete application. In addition, BFFs
allow a development team to focus on the UI and UX-specific
requirements of an application by not restricting themselves
to the microservices’ exposed web APIs. When using DDD,
additional application logic can be required, such as data
transformation, caching or orchestration, which may be im-
plemented at the BFF level or at the application layer [5]. For
this reason, the BFF can be seen as part of the UI [2].

In our approach, the UI and UX specific requirements
are represented using a design prototype that resulted from
the analysis phase (see Section III-C3). Similarly to Section
III-D2, we decided to adopt a resource-oriented style for the
BFF web API and applied the same web API guidelines. The
use of other solutions, such as a method-oriented approach,
is also possible. For deriving the web API, we considered
each view regarding the represented information as well as the
interaction elements used for data manipulation. This approach
allowed us to build resources, their representations and the
necessary operations. The resulting web API is highly linked
to the UI and must be connected to the underlying domain
represented by microservices. Since both the domain model
and the design prototype were designed using ubiquitous
language, the required microservices can be identified with
a minimum of effort and orchestrated on the application layer
in order to fulfill the requirements specified by the BFF web
API derived previously.

E. Implementation and Testing

The features, domain model and specification of the web
API enabled the development team to implement the appli-
cation. This section discusses the implementation and testing
of the microservices. We do not discuss the implementation
of the UI/UX design, as the focus of this study is on DDD
and building microservices. However, the implementation and
testing of the BFF, as the connection between the front-end
and the microservices, are discussed. Furthermore, we discuss
the use of BDD features for testing the domain model.

1) Implementation: Developing the Microservice: First, we
focus on implementing and testing the microservices. Using
the specified API, each bounded context is implemented as a
microservice. A development project, e.g., a Maven or Gradle
project that includes source code, necessary dependencies,
and build instructions, is created and pushed into the version
control repository. We recommend offering the API specifica-
tion as part of the microservice; it is added to the repository
and delivered through its web interface. Using this approach,
changes to the API can be pushed to the repository together
with their implementation. In addition, the API specification
can also be delivered at runtime when offering a dedicated
endpoint. This could, for example, be useful when having a
dedicated API management system or a central service registry.

Domain-driven design highly recommends the use of
continuous integration [5]; thus, the continuous integration
pipeline was also configured. In addition to that, we have also
added continous inspection that checks our latest build artifact
against our test cases, coding guidelines or common issues
from the Open Web Application Security Project (OWASP).
Vernon [22] describes how to implement REST resources
separating the application from the domain layer. The web
API describes entry points to the microservice; they can be
implemented in a straightforward manner. In order to separate
application-specific parts from those that are domain specific,
e.g., the usage of REST, logic at the entry points should
be application specific. Thus, a microservice should have an
application layer on top. Typically, this layer is implemented
as an anti-corruption layer; a design pattern used to achieve
a clean separation of application and domain-terms [22].
Additionally, by preventing the use of domain objects as input
parameters,—the Spring framework offers this functionality by
using the Jackson framework [42]—, the coupling of domain
objects and the web API is reduced. Thus, some minor changes
to the domain model will not influence the implementation
of the interface [22]. Again, the whole architecture of the
microservice is illustrated in Figure 4.

The domain layer is implemented according to the domain
model. Thus, when using an object-oriented programming
language, the domain objects in the bounded context are
mapped to classes. Constraints, such as multiplicities and
domain logic, are implemented in the domain object. If a
domain object from another microservice is used, a reference
to the object is saved, e.g., by using its identifier [22][43].
Implemented domain objects are intelligent objects that ensure
the constraints within the domain. To make sure that the con-
straints are correctly implemented, development approaches
such as test-driven development [16] or even behavior-driven
development [44] are good choices in order for achieving
this. But, constraints can be distributed among the domain
model; thus, constraints might be overseen. Separating the
tester and the developer of the functionality, pair-programming
and reviews can help to overcome this problem.

Besides the application and domain layers, the infrastruc-
ture layer is also part of the microservice. This layer contains
the functionality used to access databases, log events, enforce
authorization, cache results, discover services, etc.—in other
words, everything that supports the application and domain
layers. Apparent is the support for domain repositories. If a
microservice has a repository, the infrastructure layer must
offer access to a database.

Last, we discuss the implementation of the UI’s backend.
The backend is an application of the BFF pattern. Therefore,
a main goal is to offer a facade that conceals the microservice
architecture; implementation can be kept simple. Its web API is
implemented according to the API specification. In our case,
the specification is oriented to the microservice web API’s
specification; thus, the request can be directly forwarded to
the microservice.

Depending on the specification, the frontend may be re-
quired to support further functionality; e.g., authentication and
access control may be implemented in the UI’s backend.

2) Testing: Using BDD for Verifying the Correctness of the
Domain Model: In our approach, we use BDD for eliciting
the requirement specification of the desired application. Thus,
features are the main source of knowledge for developing and
testing. These features are executable and intended to test
the functionality of the application. Applying the code-by-
example approach leads to an test-driven development activity.
First, the most visible behavior of the application is stated
as features. Afterwards, the development team implements
the functionality until the feature passes the tests. During
implementation, the development team will further explore the
application requirements, add more features and implement
them subsequently. Repeating this procedure over and over
again leads to the intended application. The implementation is
driven from the outside to the inside.

In consideration of the onion architecture of microservices,
BDD starts with the specification of the outer layer and moves
into the domain model during implementation. The domain
model is getting the second source of knowledge. Through
this refinement of the features the ubiquitous language and
the domain knowledge appear; this makes the BDD testing
effective [9]. Due to that, we see a strong synergy between
BDD and DDD. North states that both approaches supports
each other [17]. BDD enables modelers and domain experts to
be more effective while knowledge crunching. The discussions
are structured along the specified features. DDD helps the de-
velopment team and the users to structure the discussion about
the application requirements. Without a shared understanding
of the domain concepts, the eliciting is impaired.

Domain concepts within the DDD domain model are tested
through scenarios from the BDD features. The link between
the domain model and the scenarios is the ubiquitous language.
Furthermore, the domain model specifies the functionality of
the domain objects. Thus, the usage of domain objects is indi-
rectly limited; that helps developers and users to write correct
features. Also dynamic behavior of the domain model, e.g.,
sequence diagrams in the process views (see Section III-C2),
are tested. Through this limitation, we encountered the problem
in the case study, that users desires functionality, which does
not fit to the domain concepts.

IV. CASE STUDY: THESIS ADMINISTRATION

In our case study, we attempted to modernize the thesis
administration process within the Department of Informatics at
the Karlsruhe Institute of Technology. Our goal was to create
an application based on microservices and to offer it to the
university through the service-oriented platform SmartCampus
[45] that we developed in our research group. To execute the
project, we chose Scrum as our software development process.

A. Eliciting the User Requirements
Following our approach, we began by eliciting the user-

requirements with BDD. First, we identified users of the
intended application. We focused on students and members
of the examination committee, which are responsible for the
coordination of exams; we chose a few contact persons from
each group. After that, we started several discussions to elicit
the most visible behavior, which we subsequently stated as
BDD features. For each discovered feature, we developed
scenarios as shown in Figure 7. These were easy to understand
for our application users by following the “for everyone”
readable approach. Therefore, we were able to further discuss
our features and sharpen our understanding of the intended
application.

Furthermore, we got some first impressions about the
domain through the revealed domain logic in our scenarios;
the guidance for exploring the domain with DDD.

Figure 7. Extracted scenario of a feature regarding the assignment of a
student to a thesis

In addition, the specified scenarios allowed us to implement
tests before starting with the implementation of the application.
If a test fails after the implementation of the feature, or after
changing parts of the code, we know that the application-
requirements are not fulfilled.

B. Crunching the Information Model
Following the approach further, we began eliciting domain

knowledge through knowledge crunching. After we identified
the domain experts (members of the Main Examination
Committee), we began to discuss the domain. We soon
noticed that the thesis is one of the main concepts in this
domain. Thus, we first explored the concept of the thesis
by interviewing domain experts. Beyond the concepts and
relationships we also noticed constraints regarding the thesis.
We included these constraints in the information model.
Figure 8 shows a section of our crunched information model.
We placed the Thesis in the center of the model to reflect its
central position within the core domain.

Figure 8. Section of the information model, showing concepts in the thesis
domain

Further discussions regarding the concept of the thesis
provided us with information about states that a thesis
can demonstrate. At this point, we adopted the domain
view approach. We modeled a finite automaton in order to
determine our understanding of this concept and discuss it
with the domain experts, as shown in Figure 9. The diagram
supports the process of understanding, without the use of
typical UML elements.

Figure 9. Finite automaton sketches the possible thesis states

After discussions with the domain experts, we had devel-
oped our desired information model and were thus able to
transform it into a PIM.

C. Creating the Design Prototype
Beyond crunching the information model, we started the

design prototyping process and sketched each identified use
case. Figure 10 shows the information page of a specific
thesis. This prototype was used to validate the elicited domain
knowledge.

Figure 10. Early phase of a mockup for visualizing thesis details

D. Enriching the Information Model
After eliciting the domain knowledge and creating a

design prototype, we were able to enrich our information
model with implementation details. We mainly focused on
using DDD concepts such as bounded context, entities, value
objects or repositories [5]. At first, accordingly to Conway’s
Law [6], we structured the domain into bounded contexts, thus
dividing the thesis administration domain into microservices.
Having done this, we were able to create a context map that
represented the composition of the bounded contexts (see
Figure 11).

Thereafter, we began to identify entities and value objects
and made a decision regarding persistence within our intended

Figure 11. Context map representing the bounded contexts of the thesis
administration domain

application through repositories. When applying the patterns,
we took into account the application’s requirements. For
example, we decided that the domain object ”Student” in
Figure 12 did not require a repository, as it does not need to
be globally accessible.

Figure 12. Thesis-specific section of the domain model, including DDD
concepts

E. Design and Implementation of the API Specification
The API specification was designed with reference to

the domain model and the design of the UI/UX. Figure 13
depicts how a single thesis resource and its attributes can
be accessed. The attributes are mainly influenced by the
information modeled in the design prototype.

F. Implementing the Microservice
During the implementation phase, the domain objects in

the bounded context were mapped to the source code. As
mentioned in Section III-A, a onion architecture is used to
separate domain, application and infrastructure logic within
a microservice. We used Java and the Spring framework to
implement the microservices. In another project, we have
also used the classic Java Enterprise Edition (JEE) approach
so our implementation phase can be considered independent
from the chosen implementation technology.

Java packages were used to separate the domain,
application and infrastructure layers as shown in Figure 14.
The Spring framework supported the developers to focus

Figure 13. OpenAPI specification of displaying a single thesis using
SwaggerUI

Figure 14. Package structure and classes of the Java implementation

on the domain layer, because it has the concepts of DDD
in mind. We used several annotations named according to
DDD concepts. Also, we used the data transfer object (DTO)
pattern from Fowler in the application layer [46]. The DTOs
define the input and output structure of requests and enable
to use the serialization functionality of Spring. The DTO has
to be aligned with the representations defined in the OpenAPI
specification in Section III-D2.

The source code of the thesis controller in Figure
16 shows the usage of Spring annotations and the DTO
pattern. The entry point to the application is defined by the
RestController annotation at Line 1). Each request to the path

1 @RestController("/theses")
2 public class ThesisController {
3 private ThesisRepository thesisRepository;
4 @Autowired
5 public ThesisController(ThesisRepository

thesisRepository) {
6 this.thesisRepository = thesisRepository;
7 }
8 @RequestMapping(method=PUT)
9 public ThesisDto create(ThesisDto thesisDto) {

10 try {
11 Thesis thesis = new Thesis(thesisDto.

getTitle(), /* ... */);
12 this.thesisRepository.save(thesis);
13 } catch (Exception ex) {
14 handleException(ex);
15 }
16 return new ThesisDto(thesis);
17 }
18 // ...
19 }

Figure 15. Part of the ThesisController

”/theses” relative to the application’s path is handled by
the ThesisController. By using dependency injection offered
by Spring, interfaces and their implementation could be
seperated. E.g., the implementation of the ThesisRepository
is not part of the application layer. Instead, the infrastructure
layer contains the implementing class ThesisMongoRepository,
which uses, in this case, the NoSQL database Mongo DB as
its persistence technology. Spring injects this implementation
in the constructor of the ThesisController, because of the
Autowired annotation (see Lines 4) to 7)). Starting at Line
8), a method for receiving and processing the thesis creation
requests is implemented. The RequestMapping annotation
with the parameter PUT makes Spring forward HTTP PUT
requests to this method. Spring serializes the request body into
a ThesisDto object. A thesis domain object is created by using
the information encapsulated by this DTO. Afterward, the
thesis domain object is persisted using the ThesisRepository.
The handleException method handles exceptions and makes
Spring respond with an ErrorDto object according to our API
style guidelines (see [40]).

1 public Thesis(String title, Date startDate, Date
endDate, UUID examinationEditorId, UUID
exam /* ... */) throws ValidationException {

2 super();
3 setTitle(title);
4 setStartDate(startDate);
5 // ...
6 }
7 public void setTitle(String title) throws

ValidationException {
8 if ((title != null) && (title.length() >

MIN_TITLE_LENGTH)) {
9 this.title = title;

10 } else {
11 throw new ValidationException(/* ... */);
12 }

Figure 16. Part of the Thesis domain object

Domain objects shall always be valid and, thus, never con-
tain information that is not consistent with the domain model.
Therefore, the creation and manipulation of domain objects
has to be handled with care. In our simple implementation,
we decided to handle validation on our own and did not use a
framework. The creation of the thesis domain object is depicted
as a source code example in Figure 16. The constructor expects
all attributes that are needed for a valid thesis. As an alterna-
tive, the factory pattern [47] could be applied to reduce the
complexity of the constructor. The parameters are forwarded to
the setters of the attribute starting from Line 3. The validation
is implemented in the setters according to the domain model.
As an alternative, one can use a dedicated method for verifying
the invariants of a domain object before creating or updating
it. In our source code example, the title must not be null and
must have more than MIN TITLE LENGTH characters.
If the validation fails, the setters, as well as the constructor,
throw a ValidationException (Line 11)). The controller on the
application layer can handle this exception and translate it for
the requesting client. In our case, just the first failing validation
is communicated to the application layer. The factory pattern
could improve the implementation. A ThesisFactory might
offer a method, which communciates a summary of validation
problems.

G. Synergy between our Approach and Scrum
It turned out that our approach worked well with Scrum.

We considered Scrum artifacts during each activity and at-
tempted to directly create them. In addition, Scrum’s iterative
approach proved a good fit for our activities. This corresponds
with the DDD principle of exploration and experimentation
discussed by Evans [5].

In addition to our original article [1], we added features
to describe user requirements. These improved the activity
of writing items for the Product Backlog. BDD features and
Scrum user stories are quite similar, because both describe the
user’s view on the application. Thus, through the combination
of features and the design prototype, we could easily fill the
Product Backlog. Furthermore, the activities of our approach
can be used to refine the Items for the Spring Backlog. The
interconnection of feautres, models and source code simplified
the changes in the Backlog after each iteration.

V. LIMITATIONS

The activities we introduced provide an overview of the
activities that take place when applying DDD in building
microservice-based applications. These activities represent a
first step towards a complete process that includes all of the
required artifacts. Our research indicated that several topics
require further investigation and more detailed descriptions;
for example, it is quite difficult to systematize the design of
the domain model according to DDD. Best practices could be
identified and added to the process description to support the
performance of this activity.

During the case study, we received useful feedback from
the software development team. In Section III-A on classi-
fication, we discussed concerns regarding the specification
that are not covered by the artifacts. We used the UI/UX
design in addition to DDD and the microservice approach to
provide the missing specification for the user interface and
application layer; however, the development team still had

problems implementing the application layer. At this point,
we discovered that the application layer is still not fully
specified. To further solve this problem, we added BDD to
our process. With BDD the development team was able to
specify the overall application and capture the functionality. It
is likely, that there are more specification artifacts that must
be identified, but the introduction of BDD helped us applying
DDD for building microservice-based applications. Using the
Spring framework, which supports developers in several ways,
much of the infrastructure layer source code is supplied. Thus,
these specifications are unnecessary.

While discussing the implementation process and testing
activities, we noted that the implementation of a domain model
created according to DDD is (slightly) bound to object-oriented
programming languages. This is due to the fact that the
concepts and diagrams introduced in [5] have object-oriented
programming in mind. The use of a functional programming
language might require a different set of patterns and diagrams;
as such, the process identified in this article is also somewhat
bound to implementation using an object-oriented language.

According to our domain view concept, the domain model
consists out of multiple diagrams, which underlie one or more
predefined representation styles. Mostly we used to the UML
for the representation of domain model content. This use
of UML suggests that we also have a underlying modeling
language—or metamodel—for our domain model, but that
would contradict Evans’ premise ”everything is allowed in the
domain model”. Introducing a modeling language for domain
modeling would allow a systematic approach for deriving a
web-API from the domain model.

VI. CONCLUSION AND FUTURE WORK

Domain-driven design offers key concepts and steps for
building applications that are based on a microservice archi-
tecture. However, the concepts lack links to existing software
engineering knowledge. We classified both with reference
to software architecture concepts and software development
activities. In addition, we provided an overview of soft-
ware development activities and artifacts used in building
microservice-based applications, expanding on existing DDD
literature. Using a case study, we demonstrated the application
of these activities in an agile software development process,
by building a thesis management application as part of the
SmartCampus platform; we also provided examples of the
artifacts that resulted. The overview of activities and their
classification represents a first step towards a complete process
for developing such web applications; we also described its
limitations and discussed the missing artifacts. However, the
application of DDD is still challenging and requires further
investigations. The concept of domain views seems as a step
forward but the concept is not yet mature; it lacks a well
definition of its application and benefits.

Domain-driven design is about focusing on the domain,
including its concepts, their relationships and business logic.
Microservice architectures are about arranging and dividing
distributed software building blocks. We identified a miss-
ing requirement specification and absent artifacts during the
process of classification and the case study. We will further
refine the activities towards a software development process
to identify a sufficient set of artifacts.

The focus of DDD is the domain and its specification
within a domain model. The other layers of the layered
architecture are not provided through the domain model. For
providing the application layer, we introduced BDD to our
approach. The behavior of the application was stated in the
form of plain text features. Furthermore, these features could
be used to automatically test the application. In consideration
of the architecture of our microservices, BDD tests each
layer of the onion architecture. In case of our approach, we
only described the testing activity of the domain model. Our
research in this topic is not completed yet, so further research
activities will concern the application of DDD in combination
with BDD.

A major advantage offered by the use of DDD and mi-
croservices is the ability to reuse existing functions. Identity
and access management are domains (almost) every applica-
tion requires; thus, we will investigate building a knowledge
repository and enriching the activities and artifacts so that the
models and functionality used in this domain can be reused
by other applications. In addition to this research topic, we
will continue to focus on how we can systematically derive
web APIs for microservices while bearing in mind quality
requirements such as potential for future evolution. The web
API also plays a significant role in discovering and reusing
microservices in the context of a microservice landscape.

Applying the concept of the domain views on the modeling
activities of DDD supports modelers and domain experts.
Based on the definition of domain view types, modelers are
more guided while modeling the domain. Nevertheless, cutting
the domain model into multiple diagrams with domain views
still requires much experience. The identification of the cutting
edges of the domain model depends on the purpose of the
application and the design decisions of the development team.
In further investigations, we are going to extend the domain
view concept to provide better support for modelers.

ACKNOWLEDGMENT

We are very thankful to Pascal Burkhardt for his contri-
butions, both through discussions and the input he provided
regarding his projects, as well as to Philip Hoyer for providing
his opinions during our discussions. Furthermore, we would
like to thank the following members of the development team
and domain experts for participating in the case study: Flo-
rian Beuer, Lukas Bach, Anne Sielemann, Johanna Thiemich,
Rainer Schlund, Niko Benkler, Adis Heric, Pablo Castro,
Mark Pollmann, Iona Gheta, Johannes Theuerkorn and David
Schneiter.

REFERENCES

[1] R. Steinegger, P. Giessler, B. Hippchen, and S. Abeck, “Overview
of a Domain-Driven Design Approach to Build Microservice-Based
Applications,” in SOFTENG: The Third International Conference on
Advances and Trends in Software Engineering, April 2017.

[2] S. Newman, Building Microservices, 1st ed. O’Reilly Media, Inc.,
2015.

[3] M. Richards, Microservices vs. Service-Oriented Architecture.
O’Reilly Media, Inc., 2015.

[4] T. Erl, SOA Principles of Service Design (The Prentice Hall Service-
Oriented Computing Series from Thomas Erl). Upper Saddle River,
NJ, USA: Prentice Hall PTR, 2007.

[5] E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley Professional, 2003.

[6] M. E. Conway, “How do Committees Invent,” Datamation, vol. 14,
no. 4, 1968, pp. 28–31.

[7] E. Landre, H. Wesenberg, and H. Rønneberg, “Architectural Improve-
ment by Use of Strategic Level Domain-driven Design,” in Companion
to the 21st ACM SIGPLAN Symposium on Object-oriented Program-
ming Systems, Languages, and Applications, ser. OOPSLA ’06. ACM,
2006, pp. 809–814, URL: http://doi.acm.org/10.1145/1176617.1176728
[retrieved: 2017.11.30].

[8] B. Iyer and M. Subramaniam, “The Strategic Value of APIs,” Jan-
uary 2015, URL: https://hbr.org/2015/01/the-strategic-value-of-apis [re-
trieved: 2017.11.30].

[9] M. Wynne and A. Hellesoy, The Cucumber Book: Behaviour-Driven
Development for Testers and Developers. Pragmatic Bookshelf, 2012.

[10] D. C. Schmidt, “Model-Driven Engineering,” Computer-IEEE Com-
puter Society, vol. 39, no. 2, 2006, p. 25.

[11] A. G. Kleppe, J. Warmer, W. Bast, and M. Explained, “The Model
Driven Architecture: Practice and Promise,” 2003.

[12] E. Seidewitz, “What Models Mean,” IEEE Software, vol. 20, no. 5,
2003, pp. 26–32.

[13] B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering
Using UML, Patterns and Java-(Required). Prentice Hall, 2004.

[14] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software
Development Process. Addison-wesley Reading, 1999, vol. 1.

[15] G. Fairbanks, Just Enough Software Architecture: A Risk-Driven Ap-
proach. Marshall & Brainerd, 2010.

[16] K. Beck, Test-Driven Development: By Example. Addison-Wesley
Professional, 2003.

[17] D. North. BDD & DDD. QCon London 2009. URL:
https://www.infoq.com/presentations/bdd-and-ddd [retrieved:
2017.11.30]. (2009)

[18] O. Vogel, I. Arnold, A. Chughtai, and T. Kehrer, Software Architecture:
A Comprehensive Framework and Guide for Practitioners. Springer
Berlin Heidelberg, 2011, URL: http://dx.doi.org/10.1007/978-3-642-
19736-9 [retrieved: 2017.11.30].

[19] I. A. W. Group et al., “IEEE Recommended Practice for Architectural
Description,” IEEE Std, vol. 1471, 1998.

[20] N. Alshuqayran, N. Ali, and R. Evans, “A systematic mapping study in
microservice architecture,” in Service-Oriented Computing and Appli-
cations (SOCA), 2016 IEEE 9th International Conference on. IEEE,
2016, pp. 44–51.

[21] C. Pahl and P. Jamshidi, “Microservices: A Systematic Mapping Study,”
in Proceedings of the 6th International Conference on Cloud Computing
and Services Science, 2016, pp. 137–146.

[22] V. Vernon, Implementing Domain-Driven Design. Addison-Wesley,
2013.

[23] A. Cockburn, “The Pattern: Ports and Adapters,” 2005, URL:
http://alistair.cockburn.us/Hexagonal+architecture [retrieved:
2017.11.30].

[24] R. C. Martin, Agile Software Development: Principles, Patterns, and
Practices. Prentice Hall, 2002.

[25] S. Millett, Patterns, Principles and Practices of Domain-Driven Design.
John Wiley & Sons, 2015.

[26] J. Palermo, “The Onion Architecture,” URL:
http://jeffreypalermo.com/blog/the-onion-architecture-part-1/ [retrieved:
2017.11.30].

[27] G. Adzic, Specification by Example: How Successful Teams Deliver the
Right Software, 1st ed. Greenwich, CT, USA: Manning Publications
Co., 2011.

[28] Y. T. Lee, “Information Modeling: From Design to Implementation,” in
Proceedings of the Second World Manufacturing Congress. Citeseer,
1999, pp. 315–321.

[29] J. Osis, E. Asnina, and A. Grave, “Formal Computation Independent
Model of the Problem Domain Within the MDA.” in ISIM. Citeseer,
2007.

[30] T. Stahl, M. Voelter, and K. Czarnecki, Model-Driven Software Devel-
opment: Technology, Engineering, Management. John Wiley & Sons,
2006.

[31] J. Arnowitz, M. Arent, and N. Berger, Effective Prototyping for Soft-
ware Makers. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2006.

[32] E. Evans, “Tackling Complexity in the Heart of Software,”
January 2016, Domain-Driven Design Europe 2016, URL:
https://dddeurope.com/2016/eric-evans.html [retrieved: 2017.11.30].

[33] M. Gebhart, P. Giessler, and S. Abeck, “Challenges of the Digital
Transformation in Software Engineering,” ICSEA 2016 : The Eleventh
International Conference on Software Engineering Advances, 2016, pp.
136–141.

[34] D. Jacobson, G. Brail, and D. Woods, APIs: A Strategy Guide. O’Reilly
Media, Inc., 2011.

[35] B. Mulloy, “Web API Design - Crafting Inter-
faces that Developers Love,” March 2012, URL:
http://pages.apigee.com/rs/apigee/images/api-design-ebook-2012-
03.pdf [retrieved: 2017.11.30].

[36] J. Webber, S. Parastatidis, and I. Robinson, REST in Practice: Hyper-
media and Systems Architecture, 1st ed. O’Reilly Media, Inc., 2010.

[37] R. T. Fielding, “Architectural Styles and the Design of Network-Based
Software Architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

[38] S. Tilkov, M. Eigenbrodt, S. Schreier, and O. Wolf, REST und
HTTP: Entwicklung und Integration nach dem Architekturstil des Web.
dpunkt, 2015, URL: https://books.google.de/books?id=pJF-ngEACAAJ
[retrieved: 2017.11.30].

[39] D. M. Rathod, S. M. Parikh, and B. V. Buddhadev, “Structural and
Behavioral Modeling of RESTful Web Service Interface Using UML,”
in 2013 International Conference on Intelligent Systems and Signal
Processing (ISSP), March 2013, pp. 28–33.

[40] P. Giessler, M. Gebhart, D. Sarancin, R. Steinegger, and
S. Abeck, “Best Practices for the Design of RESTful Web
Services,” International Conferences of Software Advances
(ICSEA), 2015, URL: http://www.thinkmind.org/download.php?
articleid=icsea 2015 15 10 10016 [retrieved: 2017.11.30].

[41] OpenAPI, “The OpenAPI Specification (fka The Swagger Specifica-
tion),” 2017, URL: https://github.com/OAI/OpenAPI-Specification [re-
trieved: 2017.11.30].

[42] FasterXML, LLC , “Jackson JSON Processor Wiki,” 2017, URL:
http://wiki.fasterxml.com/JacksonHome [retrieved: 2017.11.30].

[43] O. Gierke, “DDD & REST - Domain Driven APIs for
the Web,” November 2016, SpringOne Platform, URL:
https://www.infoq.com/presentations/ddd-rest [retrieved: 2017.11.30].

[44] D. North, “Behavior Modification: The Evolution of Behavior-Driven
Development,” Better Software, vol. 8, no. 3, 2006.

[45] R. Steinegger, J. Schäfer, M. Vogler, and S. Abeck, “Attack Surface
Reduction for Web Services Based on Authorization Patterns,” The
Eighth International Conference on Emerging Security Information,
Systems and Technologies (SECURWARE 2014), 2014, pp. 194–201.

[46] M. Fowler, Patterns of Enterprise Application Architecture. Addison-
Wesley Longman Publishing Co., Inc., 2002.

[47] J. Vlissides, R. Helm, R. Johnson, and E. Gamma, “Design Patterns:
Elements of Reusable Object-Oriented Software,” Reading: Addison-
Wesley, vol. 49, no. 120, 1995, p. 11.

