Microservice Development Based on Tool-Supported Domain Modeling

Michael Schneider, Benjamin Hippchen, Pascal Giessler, Chris Irrgang,
Sebastian Abeck

Cooperation & Management (C&M), Institute for Telematics
Karlsruhe Institute of Technology
Karlsruhe, Germany

Email: {michael.schneider,

benjamin.hippchen,

pascal.giessler, abeck}@kit.edu

Email: chris.irrgang@student.kit.edu

Abstract—Developing complex business-related software solutions
with domain-driven microservices has become popular recently.
Based on the concepts of domain-driven design, the business is
expressed as a domain model. However, domain-driven design
does not mention any modeling guidelines or tools for assisting
the design process. In addition, modeling a complex domain can
lead to a complex domain model that is difficult to read and
implement. To tackle the complexity of the domain model, we
introduce a concept for splitting the domain model into several
diagrams, and we apply formalization based on the Unified
Modeling Language. Furthermore, we illustrate how the created
domain model is transferred step by step into code.

Keywords—Domain-Driven Design; Modeling; Tool; Microser-
vices; UML profile; Model to Code.

I. INTRODUCTION

Modeling the domain of a business unit is part of many
design procedures and decisions in software development.
For the development of microservices-based systems, Domain-
Driven Design (DDD) is a suitable approach [1]. The concept
of the domain model was clarified by Eric Evans in his book
Domain-Driven Design: Tackling Complexity in the Heart of
Software [2], and it was further refined by Vernon [3]. After
DDD, everything goes for modeling the domain. This includes
the activities or business processes, the information involved,
and any restrictions that may appear. Therefore, the creation
of a domain model helps not only to better build the software
architecture through a mannequin-driven design but also to
increase the understanding of the business area in which an
application operates.

When one is modeling with DDD, there are no restrictions
as to how to express the domain. However, DDD emphasizes
that the domain implementation should represent the domain
model. Without a systematic modeling approach, it is possible
that the development of the domain model results in models
that are not suitable for the implementation. Furthermore, our
experiences have shown that modeling the domain without
any tool support can lead to domain models that are dif-
ferent. One example of the differences relates to the used
designations, such as notations, names, and elements. This
makes collaboration on the models within a team challenging
and makes the automatic code generation from the domain
model impossible. A further step can entail automatically
generating the code from the model. However, a certain degree
of formalization of the model is required in order to generate
code automatically. Formalization can ensure that the model
and the code are synchronized. For example, the automatic

generation of Java code when one uses a UML-compliant
domain model could be possible [4]. To assist the modeling
process of a formalized model, as well as automatic code
generation, a tool should be used. Furthermore, interfaces of
microservices, which often are RESTful APIs, can be derived
[5] when one follows API guidelines [6]. In addition, in terms
of a microservice architecture, it is important to maintain the
domain model in order to maintain the microservices. Without
a tool, this maintenance can be difficult. Therefore, applying
a tool-supported domain model creation process can help to
solve this problem. Furthermore, we discuss how to generate
the code from the created domain models.

The paper is structured as follows. Section II presents
related work and articles. Section III illustrates why there is
the requirement of additional modeling elements. In addition,
a suggestion for structuring the domain models is shown.
Section IV discusses the UML profile enhancements. Section
V explains the necessary steps for using the UML profile with
the tool; moreover, this section illustrates the usage of the tool.
Section VI discusses the conversion of the model into the code.
Finally, Section VII gives a summary of the paper and surmises
what the prospects are for future research.

II. RELATED WORK

Our results presented in this paper are related to or were
inspired by the work of several other authors. First of all
in this section, we introduce DDD as our main software
development approach for modeling patterns in greater detail.
Its concepts are the basis for our research. After this section, a
first step for formalizing DDD’s domain modeling is evaluated.
Furthermore, we explain how our systematic approach is
based on model-to-code approaches, such as the Model-Driven
Architecture (MDA).

A. Domain Modeling with Domain-Driven Design

DDD is a software development approach introduced by
Evans [2] that emphasizes the design phase in modeling
activities. Model activities aim at gathering information about
a given customer’s domain—the so-called domain knowledge.
The domain knowledge is stated in a domain model, the
central artifact of DDD. In line with the principles of Evans,
only business logic is relevant to the domain model. Other
information, such as technical aspects of applications is ne-
glected. DDD provides several stereotypes of domain objects;
a domain object represents a business object from the real
world. Classifying the domain objects is important for both



the domain model and the implementation of the application.
The stereotype is stated in the domain model at the modeling
element. Two of the most important stereotypes are "entities"
and "value objects". Entities are real-world objects with an
identity; this identity enables to find the specific instance of
this real-world object. This identity never changes for these
kinds of domain objects. Value objects describe also real-
world objects, but an identity is not necessary in this case. A
more detailed look at these stereotypes has been provided by
Vernon [3]. Derived from this stereotype, the implementation
is adapted accordingly.

DDD offers a substantial number of useful patterns that
help to understand the domain and manifest it into a model.
Nevertheless, one major problem of DDD is the missing
modeling guideline, such as a specified modeling language.
Actually, Evans emphasizes the use of any kind of representa-
tion for domain models as long as it supports the understanding
of the customer’s domain. When one examines the domain
models in [2], they mostly remind one of UML class diagrams,
but Evans has never stated that UML acts as modeling syntax.
In Section IV, we build on a DDD-based UML profile to tackle
the missing modeling guidelines.

B. Formalization of Domain-Driven Design’s Domain Model

While DDD does provide useful patterns to model the
domain, the application for the representation within the model
is challenging. The look and feel of domain models differ from
development team to development team. Especially when one
develops applications in a microservice architecture, it is nec-
essary that development teams have a common understanding
of how to model a given customer’s domain. Thus, applying
these patterns would be more efficient with the help of a
formalized modeling language.

To tackle these problems, [7] has provided a first Unified
Modeling Language (UML) profile for DDD. Based on the
domain models used by Evans in [2], the authors have created
an overview of which UML elements are used, and they
have derived their domain-driven MSA modeling (DDMM);
MSA stands for "microservice architecture." More or less,
Evans has used UML modeling elements which has led to the
decision that a UML profile would close the lacking modeling
guidelines.

The UML profile provided by [7] presents an inspiring
first step for closing the modeling language gap for DDD.
Nevertheless, we can see further room for improving the UML
profile. When one considers a complex domain, modeling it in
a domain model can lead automatically to a complex model.
Thus, we have introduced a concept called "relation view" that
decreases the complexity of the domain model by splitting the
model apart. Further, we have provided a concrete example for
a modeling tool that is able to apply UML profiles.

C. Model-to-Code Transformation

The classic approach for model-to-code transformation
is directly associated with an Object Management Group’s
(OMG) Model-Driven Architecture (MDA) [8]. MDA is a
software development approach that emphasizes the use of
models. Different types of models have different purposes in
the software development phases. Furthermore, depending on
the model’s type, the depth of details is more fine-grained
or coarse-grained. The idea behind MDA is to focus on the

modeling aspects, while software development for providing
(domain) knowledge rich models. As a next step, the source
code can be generated automatically based on the knowledge
within these models. Previous research has claimed a great
number of advantages for MDA-based software development
[9], but the establishment in software development companies
has proven that this approach has its own problems to apply.
The main problem is that the automated generation of source
code is not well realized. Often source code has to be adjusted
to either work or fit to the problem modeled in the model.
Due to this knowledge about automated model-to-code trans-
formations, we elected a systematic (not automated) approach
to transform a model into the source code. We provided a fix
structure (for example, packages) for the microservice’s source
code.

III. STRUCTURING AND MODELING OF THE DOMAIN

Domain-driven design differs between several types of
objects that we translate into a systematic modeling approach.
A domain may contain several domain objects located in
distinct bounded contexts. Modeling each domain object into
only one diagram may lead to a complex and incomprehen-
sible diagram. Therefore, we separate the domain model into
different diagrams: for instance, the relation view for modeling
the structural domain aspects.

A. Systematic Domain Structure

When modeling the domain, several diagrams are created.
Figure 1 shows a simplified version of a so-called "relation
view", a tactical diagram concerning the to-do list domain.
The to-do list domain is concerned with managing to-do lists as
well as the to-dos themselves. The considered domain is simple
and easy to understand, but the handling of the relation view
can be shown well. Especially for modeling larger and complex
domains we see a benefit for using the relation view diagram.
Developers can work simultaneously on the different relation
view diagrams. Tactical modeling focuses on a partial aspect
of the domain within a bounded context, while strategical
modeling concerns the higher-level structure of the domain
model. A bounded context defines the scope of validity of
the model and the code [10]. For each bounded context, we
modeled the relation view as depicted in Figure 1.

w entitys
Todolist wentityw
. contains = Todo
- fitle: String
- content: String ‘

+ createTodo(String) Todo

iR

0Wns
wentitys «value objects
user has Address
‘— name: Sting

Figure 1. Extract of a relation view

The model is similar to a UML class diagram [2][7], but,
in addition, the excerpt contains additional identifiers. These



TodoListManagement
Domain Model
TodoList (Context Map)
«subdomain> IAM
«subdomain» TodoList
| «bounded context» TodoManagement

TodoManagement (Orchestration
View)
TodoManagement (Relation View)

«entity» Todo

«entity» TodoList
«entity» User

«value object» Address

Figure 2. Domain structure

identifiers represent several elements that are required for
modeling DDD, such as entities, value objects, and different
kinds of relationships. Additionally, attributes and methods
express the domain logic. For example, the method cre-
ateTodo(String):Todo is responsible for creating a "to-do" that
belongs to the to-do list.

The DDD elements need to be formalized in order to
support tool-assisted modeling. In addition, the diagrams need
to be stored in a structured way. Structuring the domain leads
to several advantages, such as an easier communication across
the team - thus, each team member knows exactly where the
necessary diagrams are located. Therefore, we have provided a
suggestion for structuring the different diagrams of the domain
in order to increase retrievability and the value of the diagrams
for the teams.

Each domain is structured in its own repository, comparable
to folders and paths. Figure 2 illustrates the structure of the
domain “TodoListManagement” of the TodoListManagement
application. The repository contains strategical and tactical
modeling diagrams. In this work, we only focus on the tactical
diagrams, and we only briefly mention how the strategical
modeling diagrams are placed in this structure. Each folder
contains a domain model. The domain model is structured as
follows. On the top level, the context map of the domain is
shown. The context map is a concept of DDD [2] that contains
bounded contexts related to a domain. In a microservice archi-
tecture, each bounded context is a candidate for a microservice
that could be reused by other applications [11]. Using the
context map diagram, the tool-support allows the easy access
and navigation of the related diagrams simply by allowing one
to click on the modeled bounded contexts.

Following the context map, all subdomains are located
on the top level path. Figure 2 depicts two subdomains:
identity and access management (IAM) as well as the TodoList,
whereby the subdomain "TodoList" is unfolded. Each subdo-
main contains their related bounded contexts. In the example
of the TodoListManagement the bounded context is called
TodoManagement. Each bounded context contains diagrams
concerning this bounded context (see Figure 2). The first
diagram is a strategical diagram — the context orchestration
that concerns the orchestration. In addition to the context or-
chestration, the tactical diagrams follow. Each bounded context
consists of at least one relation view. The relation view is
the tactical diagram that contains the domain elements and

their relationships. In addition to the structural elements, the
behavior of the domain behavior is modeled as well in different
diagrams. For the dynamic components, ordinary sequence
and activity diagrams can be used, which are, therefore, not
considered further in the following analysis. The diagram
elements corresponding to the relation view, such as entities,
value objects, or relations, are located directly below the
diagrams. These elements can be reused for all diagrams
concerning the related bounded context.

IV. UML PROFILE

In this section, the formalization of the model is discussed.
Possible options are UML profiles or metamodels, but each
has their own advantages and disadvantages. The creation of
a UML profile is preferable to an extension of the metamodel
due to the low added value. Therefore, we used a UML profile
for our modeling purposes (see [7]) and added the relation
view.

A. UML Profile of the Relation View

The relation view describes the inner structure of a bounded
context, essentially corresponding to a class diagram and
representing the tactical part of DDD. A first approach for
dividing the model into several views has already been men-
tioned by other scholars [1]. Many domains are complex and
contain many domain objects. The relation view reduces the
complexity for modeling the domain and should be used for
complex domains. Only the domain objects corresponding to
the current bounded context are considered in the relation view.
Therefore, the relation view describes a manageable section of
the domain. Each bounded context has at least one relation
view, which can consist of entities, value objects, domain
services, and their relationships. Therefore, the relation view
defines the domain terms and correlates them into a relation-
ship. The elements and relations used in the relation view
are also already largely defined in UML. Established DDD
concepts, such as entities and value objects, are supported with
the UML profile. Due to the large intersection, only minor
adjustments compared to UML are necessary since mainly
new stereotypes have to be introduced and the behavior of
existing elements, such as packages, components, and classes
can be maintained. Thus, the power provided by heavyweight
modeling using metamodels would hardly be used. The most
important UML additions for the relation view are based on
[7] and discussed in the following.

«Metacass:

Class
//' ‘\\
//’ ™\
o \\\
domain service enfity value object

‘ xgereotypes

‘ aStereotype» ‘

xgereotypes ‘

Figure 3. Profile of the relation view



1) Entity: An entity is one of the most important elements
of the relation view. The entities represent the corresponding
objects from the domain, are defined as UML classes, and
include attributes and methods. They encapsulate all function-
ality associated with or emanating from this entity. Entities can
be provided via the API. As Figure 3 illustrates, we added the
stereotype "entity" to the UML class element. For example, the
domain object "todo" (see Figure 1) is an entity; therefore, the
modeling element for an entity (declared with the stereotype
"entity") was added to the diagram.

2) Value Object: A value object behaves similarly to
an entity but does not have an identity. Another difference
between entities and value objects is that a value object is
not immutable, and, therefore, a new object must be created
when changes are made. This means that only the attributes
are considered in object comparisons, which makes a com-
parison between two different objects with the same attribute
values true. For example, an address consisting of first name,
surname, street, and the city used by several people (in this
example, "users") - could become a value object. In a different
domain, the address could be an entity as well. Value objects
are identified with the stereotype "value object."

3) Domain Service: Domain services are used when the
responsibility of a process is incumbent upon several entities
or value objects. A domain service does not maintain any state
in order to guarantee consistent and predictable behavior. The
stereotype "domain service" identifies a domain service.

4) Relationships between Domain Objects: The relation
view does not contain any additional self-defined stereotypes
for relationships. Instead, the most important relationships
from the UML class diagrams are used. This includes the gen-
eralization, the composition, the aggregation, and the binary
association. Relationships between the domain elements are
usually defined by means of a verb and the reading direction.
In addition, multiplicities and directions are assigned in the
same manner as in a UML class diagram.

V. USED ToOL AND EXAMPLE

This section presents Enterprise Architect (EA) [12], which
is the tool we are have used for modeling the domain.
Furthermore, this section explains how the UML profile is
applied in the tool.

A. Enterprise Architect

EA is a software modeling tool that is based on OMG
UML [13]. By default, Enterprise Architect provides support
for user-defined extensions, including the use of UML profiles.
Enterprise Architect already provides some useful profiles for
popular modeling languages, such as Business Process Model
and Notation (BPMN), Systems Modeling Language (SysML),
or ArchiMate.

B. Enterprise Architect Profiles (MDG)

Besides the UML profile discussed in Section IV, further
profiles are required. In order to create a UML profile for DDD
with optimal user experience, additional diagram and toolbox
profiles are required next to the previous (see Section IV) UML
profiles. These diagram and toolbox profiles are specified in
EA. The diagram profiles allow the easy creation of custom
diagram types that are suitable for the DDD modeling problem.
Figure 4 depicts an excerpt of the definition of the custom

zmetaclasss
Diagram_Logical

+ pdata: String = Showlcons=0;Sho...
+ dyleex: 3tring = Whiteboard=1;
+ toolbox = Relation View

3

‘ «Stereotypes ‘

Relation View

Figure 4. Excerpt of the EA DDD profile

diagram profile for the relation view. The custom diagrams
illustrated in Figure 4 extend the standard UML diagram
metaclasses and predefine the appearance and feature visibility
of the diagram elements. These diagrams can be accessed via
toolboxes. Therefore, in addition to the profiles, a toolbox
profile is specified. The toolbox profile links an arbitrary dia-
gram type to a custom-built toolbox. Opening a diagram type
automatically displays the corresponding toolbox. This toolbox
contains the configured elements and connectors. For example,
the toolbox of the relation view contains elements, such as
"Entity", "Value Object”, and "Domain Service". Figure 5
illustrates our defined toolbox for the relation view. Thus,

wsterectypes
Elements
+ Relation View::domain service{UML::Class) = Domain Servics
+ Relation V| entity{UML::Class) = Entity

+ Relation V| value object{UML Class) = WValus Object
+ UML::Enumeration = Enumeration

wstereotypes
Relationships

+ UML: Association = Association

+ UML:Composition = Composition

+ UML: Dependency = Dependency

+ UML:.Generalization = Generalization

ametaciasss
ToolboxPage

Figure 5. Toolbox profile for relation view

the user has only the necessary self-defined and predefined
standard modeling elements available; this, in turn, simplifies
the modeling process and reduces modeling inconsistencies.

C. Modeling with EA

In order to model the different diagram types, the corre-
sponding DDD profile is loaded. For example, the relation view
is modeled by using the previously defined relation view tool-
boxes. This simplifies the modeling process because EA offers
many modeling elements. The result of the toolbox defined in
Section V-B is illustrated in Figure 6. The toolbox contains all
the previously discussed elements as well as the relationships.
For modeling purposes, the elements are simply dragged out
of the toolbox into the diagram. In Section III, several domain
objects are illustrated in Figure 1 — “TodoList,” “Todo,” “User,”



Toolbox 4 Relationships
More tools ~ A Aggregation
4 Elements / Association
= Domain Service A Composition
& Entity 1 Dependency
& value Object /' Generalization
€4 Enumeration >

Figure 6. Resulting EA toolbox for the relation view

and “Address” — as well as several relationships. The diagram
itself was created by using EA and the corresponding DDD
profile.

VI. MODEL-TO-CODE AND CODE-MODEL EQUALITY

The tool-supported domain modeling based on an extended
UML profile enables the possibility of generating code directly
from the model. Enterprise Architect and other tools auto-
matically generate classes, attributes, and methods (including
parameters) from the model. Using this generation process
ensures that the model and code are equal at the point of the
code creation process. During implementation, there is a high
chance that the developers will notice that the modeled meth-
ods, attributes, and classes are not enough or that they require
changes. Therefore, the code should be adjusted according to
the needs. Adding new classes, methods, and attributes to the
implementation does not automatically adjust the model. If the
model is not adjusted afterwards, the model is no longer useful
as a convenient reference. This model state is not desired;
therefore, an interface between the tool and the code is required
that can automatically adjust the model when code changes
happen. EA allows importing source code that can be used
to automatically create a model. The imported source code
creates a new model, but it does not adjust the model used to
generate the code.

A. Step-Wise Model-To-Code Transformation

For the implementation of the todo list domain, we used
Java as a programming language and the framework Spring
[14], which simplifies the developing of enterprise applica-
tions. The relation view that we created was transferred step
by step into code. Figure 7 shows the different steps for imple-
menting the domain model. To simplify the implementation
process, we implemented an entity-base class that provides
useful DDD functionality and can reduce the boilerplate code
of the microservice implementation. As depicted in Figure 8
line 2, this base class is inherited and provides useful classes,
configurations, and methods (for example, an ID and corre-
sponding equals- and hashCode methods,) and it simplifies
the microservice-based development with Spring Boot. The
annotation @ Entity in line 1 enables the mapping to a database
by an ORM framework and is used for domain objects that are
entities. In addition, the annotation @ ValueObject is used for
value objects.

In the next step, the infrastructural annotations were added.
As shown in line 7 of Figure 8, domain database annotations
define the relationships and cardinalities between the domain
objects for the database. These database-specific annotations
are sufficient in this simple case since the domain can be

Step Code Annotations
. . | @Entity
[ Core (Domain) %[ EntityBase | @ValueObject
Infrastructural Domain | @OneToMany
Annotation —> Database ! @ManyToOne
_ . | @OrderBy
Enrichment Annotations | @NonNull
DomainLogic —> Domain Methods |,
DomainTests —> Unit Tests i @Test

Figure 7. Implementation steps and code annotations

mapped to the database as it is—a structural adjustment of the
class by database restrictions did not take place accordingly.
The annotations were added to relating domain objects, for
example, TodoList and Todo. After this step, the methods that
contained the domain logic were implemented. It should be
noted that the class does not contain any "getters" and, espe-
cially, no "setter" methods because business methods are not
covered with simple setter methods [3]. Getters are only used if
they are really necessary for fulfilling business capabilities and
cannot be queried indirectly by the use of business methods.

@Entity
public class TodolList extends EntityBase {

1
2

3

4 @Column (nullable = false)
5 private String title;
6

7

8

9

@OneToMany (cascade = CascadeType.ALL,
mappedBy = "todoList",
orphanRemoval = true)

10 private List<Todo> todos;

Figure 8. Excerpt of the TodoList implementation

Once the implementation of the domain model were com-
pleted, the implementation was tested. At the domain level,
unit tests were used for the testing purpose that focused on
the formal correctness of the domain at a technical level and
ensured the correct behavior of the domain implementation.
For aggregate elements, the root element methods were called
in order to test the domain logic within the aggregate.

B. REST-based Web API

According to [15] and with consideration for the Richard-
son maturity model (RMM) [16], several questions have to be
answered to provide a REST-based Web API: 1) Which domain
objects should be exposed? 2) Which information from these
selected domain objects should be exposed? 3) Which methods
of the domain should be provided?



TABLE I. END POINTS OF THE TO-DO LIST EXAMPLE

Entity Collection Resource ID
TodoList  /todo-lists /{id}
Todo /todo-lists/{id }/todos /{number}

Once these questions have been clarified, an initial speci-
fication of the Web API can be derived. For the specification,
the domain objects will be mapped onto so-called "resources"
that act as data transfer objects (DTOs) that contain (partial)
information of the respective domain objects. By using such an
approach, we introduce an abstraction layer so that the domain
objects can develop independently of each other without a
necessary Web API change. A Web API change can result
in a negative side-effect for existing service customers if the
provided methods are changed. The domain object methods are
mapped to corresponding HTTP methods to reflect on the oper-
ation semantically (create, read, write, update, delete, execute).
The positive impact of a good Web API is uncontroversial
especially when offering the underlying service to a wide range
of possible service customers. That is why several companies
apply dedicated review cycles and also create guidelines on
how to build Web APIs with quality in mind [17][18]. There
is also an aggregation of well-known best practices that should
be kept in mind during the design process [6][19][20]. For
the purpose of formalization and further processing, dedicated
specific languages, such as OpenAPI can be used, which,
in turn, come with corresponding tool support. For instance,
dedicated client libraries can be automatically generated to
simplify the integration.

In our case, we derived two end points for our to-do list
example, as illustrated in Table I. Using the tool SwaggerUI,
we could visualize and interact with the Web API with no
written code from client side. The end points of the to-do list
example are displayed in Table I. Requests to the entity Todo
are always passed over to-do lists because the entity TodoList
is the aggregate root.

VII. CONCLUSION AND LIMITATION

We focused on the tactical modeling of a domain based
on UML profiles in order to formalize the modeling process.
Our approach has allowed us to divide the domain model
into multiple models; this has allowed us to develop different
models simultaneously, which reduces the complexity of the
modeling process. In order to model the diagrams, we used
EA as modeling tool; this enables an automatic translation
of the model into code. For entities and value objects, we
implemented base classes that provide useful functionality
for these domain concepts. However, at this point we trans-
ferred the model into code manually. For an automatic code
generation, additional work is required. Currently, we are
only able to automatically generate the classes, methods, and
attributes. Further research is required, because the annotations
and mappings could be automatically added by the modeling
tool as well. The annotations remove boilerplate code from the
implementation, but the tool needs to automatically provide
the annotation when code is generated. For example, the
annotations @Entity, @ ValueObject need to be automatically
generated. In addition, relationships and database annotations
need to be considered as well. In future work, we need to

add the mappings that are required to automatically create the
complete code from the toolset we presented.

Since we focused on tactical models only, strategical mod-
eling and the implementation aspects should be investigated to
a greater extend in further research.

REFERENCES

[1] B. Hippchen, P. Giessler, R. Steinegger, M. Schneider, and S. Abeck,
“Designing Microservice-Based Applications by Using a Domain-
Driven Design Approach,” in International Journal on Advances in
Software, Vol. 10, No. 3&4, Pages 432 - 445, 2017.

[2] E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley Professional, 2004.

[3] V. Vernon, Ed., Implementing Domain-Driven Design.
Wesley, 2013, ISBN: 978-0321834577.

[4] M. Usman and A. Nadeem, “Automatic generation of Java code from
UML diagrams using UJECTOR,” International Journal of Software
Engineering and Its Applications, vol. 3, no. 2, 2009, pp. 21-37.

Addison-

[S] P. Giessler, “Domain Driven Design of Resource-oriented Microser-
vices,” Ph.D. dissertation, Karlsruhe Institute of Technology, Germany,
2018.

[6] P. Giessler, M. Gebhart, D. Sarancin, R. Steinegger, and S. Abeck, “Best
Practices for the Design of RESTful Web Services,” in International
Conferences of Software Advances (ICSEA), 2015, pp. 392-397.

[71 F. Rademacher, S. Sachweh, and A. Ziindorf, “Towards a UML Profile
for Domain-Driven Design of Microservice Architectures,” in Inter-
national Conference on Software Engineering and Formal Methods.
Springer, 2017, pp. 230-245.

[8] A. G. Kleppe, J. Warmer, W. Bast, and M. Explained, The model
driven architecture: practice and promise. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, 2003.

[9] K. Czarnecki and S. Helsen, “Classification of model transformation
approaches,” in Proceedings of the 2nd OOPSLA Workshop on Gen-
erative Techniques in the Context of the Model Driven Architecture,
vol. 45, no. 3. USA, 2003, pp. 1-17.

[10] E. Evans, Domain-Driven Design Reference: Definitions and Pattern
Summaries. Dog Ear Publishing, 2014.

[11] S. Newman, Building Microservices: Designing Fine-grained Systems.
" O’Reilly Media, Inc.", 2015.

[12] Sparx Systems, “Enterprise Architect - Model Driven UML Tool,” URL:
https://www.sparxsystems.eu/start/home/ [retrieved: 2019.03.15].

[13] O. OMG, “Unified Modeling Language (OMG UML),” Superstructure,
2007.

[14] Pivotal Software, “Spring Framework,” URL: https://spring.io/projects/
spring-framework/ [retrieved: 2019.03.15].

[15] R. T. Fielding, “REST: architectural styles and the design of network-
based software architectures,” Doctoral dissertation, University of
California, Irvine, 2000, URL: http://www.ics.uci.edu/~fielding/pubs/
dissertation/top.htm [retrieved: 2019.01.31].

[16] J. Webber, S. Parastatidis, and 1. Robinson, REST in Practice: Hyper-
media and Systems Architecture, 1st ed. O’Reilly Media, Inc., 2010.

[17] A. Macvean, M. Maly, and J. Daughtry, “API Design Reviews at Scale,”
in Proceedings of the 2016 CHI Conference Extended Abstracts on
Human Factors in Computing Systems. ACM, 2016, pp. 849-858.

[18] Zalando, *“Zalando RESTful API and Event Scheme Guide-
lines,” 2017, URL: https://zalando.github.io/restful-api-guidelines/
[retrieved: 2019.01.31]. [Online]. Available: https://zalando.github.
io/restful-api-guidelines/

[19] M. Masse, REST API Design Rulebook: Designing Consistent RESTful
Web Service Interfaces. " O’Reilly Media, Inc.", 2011.

[20] P. Giessler, M. Gebhart, R. Steinegger, and S. Abeck, “Best Practices
for the Design of RESTful Web Services,” International Journal On
Advances in Internet Technology, vol. 9, no. 3 and 4, 2016.



