
A Model-Driven Development Approach
for Service-Oriented Integration Scenarios

Philip Hoyer, Michael Gebhart, Ingo Pansa, Stefan Link, Aleksander Dikanski, Sebastian Abeck
Research Group Cooperation & Management

Karlsruhe Institute of Technology
Karlsruhe, Germany

{ hoyer | gebhart | pansa | link | dikanski | abeck } @ kit.edu

Abstract—The establishment of IT-supported processes within
organizations requires the integration of existing distributed
legacy applications. Therefore, Web services can be generated
as wrappers to flexibly integrate existing distributed legacy
applications using a standardized interface. Existing
approaches mostly focus on the technical issues of the
integration using Web services and do not support the
developer during the description of an integration processes.
Thus, in this paper we introduce a development approach that
supports the developer in describing an integration process
and finally allows a model-driven transformation of the prior
defined integration process into Web service interfaces and
XML schema definitions. Our approach is exemplified by a
scenario at the Karlsruhe Institute of Technology (KIT) that
implements a process to visualize the study progress of a
student.

Keywords—model-driven development; service-oriented
integration; Web services; Unified Modeling Language

I. INTRODUCTION
The integration of existing distributed legacy applications

is one of the major tasks when establishing new processes
within organization that are expected to be IT-supported.
Therefore, the required applications have to be identified and
the integration process has to be described. Finally,
appropriate adapters have to be developed that realize the
technical aspects of the integration.

To formalize the integration process, activity diagrams in
the Unified Modeling Language (UML) [1] can be used.
They describe the flow of actions that have to be performed
and each action represents a functionality of an existing
distributed legacy application. As technology to develop the
adapters, often Web services are used to provide the required
functionality in a standardized manner. The Web service
adapters and the according data schemas are mostly
developed manually, using the Web Services Description
Language (WSDL) [2] and XML Schema (XSD) [3].

Existing approaches mostly focus on the technical
aspects of the integration. That means that they focus on the
development of Web service adapters and the according data
schemas. However, the integration step is a complex task
that requires knowledge about existing applications and
existing data types to create an appropriate integration
process. The input and output data types enable the
determination of a possible wiring of functionality without

unnecessary data transformation. Additionally, it shows if
functionality can be executed in parallel or needs a
sequential execution.

Thus, in this paper we propose a development approach
that is built upon the existing work about technical
integration using Web services. The development approach
supports the developer in creating the integration process and
allows an automatic generation of code skeletons for the
Web service adapters. The development approach is on the
one hand service-oriented, which means that the purpose is
to provide functionality as a service. On the other hand, it is
model-driven, which means that the created integration
processes are transformed into the required Web service
interface descriptions using WSDL and the according data
schemas using XML Schema.

Our approach is exemplified by a scenario at the
Karlsruhe Institute of Technology (KIT). Existing distributed
legacy applications are integrated to provide a new
functionality that allows students to gain a visualized insight
into their current study progress. The existing applications
and their data types are used to support the developer in
creating the integration process. Finally, the integration
process is transformed into the required Web interfaces for
the Web service adapters.

The paper is structured as follows: Section 2 represents
the most relevant related work in the context of modeling
workflows with the UML and the transformations into
interfaces for Web services. Section 3 illustrates the service-
oriented and model-driven approach. Section 4 exemplifies
our approach by an integration process at the Karlsruhe
Institute of Technology (KIT) to visualize the study progress
of students. Section 5 concludes the paper and makes some
suggestions for future research work.

II. RELATED WORK
As our approach targets a wide area of different artifacts

supporting a model-driven development approach (service
model, WSDL and Web services), there are several related
studies.

Considering the overall development approach, starting
with formal requirements and leading to a set of executable
code, Meijler, Kruithof et al. illuminate the advantages of
model-driven integration aligned with service-oriented
principles [4]. An integrated approach combining both top-
down (requirements to software components) and bottom-up
(existing tool assets) approaches is proposed. Therefore, we

decided not to follow strictly a top-down development
approach that would hamper the integration of existing
applications, but to follow a combined middle-out approach
enabling the description of existing applications early in the
transformation process.

Model-driven development of Web services has already
been discussed in several previous works, for instance in [5,
6, 7]. Based on these approaches, we focused on capturing
business requirements with models and mapping these
models to existing distributed legacy applications.
Considering the integration of legacy applications using Web
services, a generic model for application integration is
presented in [8]. Since different legacy applications often use
different formats and standards for describing their data
schemas, a mapping of these different data schemas has to be
realized additionally. The proposed approach in [8] focuses
on the integration of several different data schemas by
implementing adapter components realized with Web
services. Within the special requirements of our scenario, not
only the integration of existing data schemas but also the
integration of existing business logic is needed; thus our
approach considers the aspect of integration from a system-
oriented direction.

Finally, the presented intermediate model for service
descriptions (c.f. chapter 3) is based on the work of Emig,
Krutz et al. [6]. While the approach presented in [6] targets
towards a holistic and technology-independent possibility for
describing service interfaces of service-oriented components,
we improved the proposed development approach by the
integration aspect of existing software assets. Similar to [6],
Johnson demonstrates the use of a technology-independent
approach for describing service-oriented software
components [9]. An UML 2.0 Profile [1] as an extension to
existing modeling tools is proposed, although specific
modeling elements are introduced regarding the very special
needs of the appointed vendor-specific tool chain.

III. SERVICE-ORIENTED AND MODEL-DRIVEN
DEVELOPMENT APPROACH

In this paper, we present our model-driven software
development approach for service-oriented integration
solutions. The development process starts with the definition
of the requirements. The next step is to model the data types
and the workflow according to the defined requirements and
the available legacy applications. Afterwards, model-driven
transformation techniques are applied, generating formal
interface descriptions by transforming the workflow
modeled, by means of a UML activity diagram into a service
model. Finally, a second transformation step is used to
generate Web service interfaces in WSDL and corresponding
data types in XML Schema.

A. Analysing the Requirements
The requirements needed for designing the integration

solution can be captured using manifold techniques. All
techniques for requirement analysis have in common that
there is a close collaboration between the customer and the
architect or similar roles, since only the customer knows

what he expects from the final software solution, but cannot
express it in an unambiguously and well-formed form.

Some traditional techniques for requirement elicitation
are introspection, questionnaires, interviews or brainstorming
[10]. Representation-based techniques use descriptions of
scenarios or use cases. A common approach that works well
due to our experience is the prototyping of the graphical user
interface, since it gives the customer a “look-and-feel” of
what the final solution might look like.

Our development approach does not prescribe a concrete
technique but rather allow the developer to choose one. Since
we propose an approach for integration scenarios, an
important part after the requirement elicitation is to analyze
existing applications and systems and their containing data,
which are required to fulfill the functional requirements.

Based on the defined requirements, the needed data
objects are specified. In almost all cases, the data objects can
either be derived from the native interface description of the
legacy applications, or, if such an interface is not present,
reverse engineered from the database schema used by the
underlying application. Hence, the desired data objects are
modeled as UML class diagrams by using Classes with typed
Properties and Associations (note that all UML meta classes
are written in italic). Many UML modeling tools support the
generation of SQL database schemas from UML class
diagrams and vice versa.

B. Designing the Workflow
Having analyzed and modeled the required data objects,

the next step is to design the workflow in a bottom-up way.
During the execution of the workflow, applications are
invoked, which provide required data or execute actions. The
workflow is represented by an Activity (c.f. Fig. 1: Source
model, Activity “Wf”).

To specify the starting input and the final output of data,
the activity might have ActivityParameterNodes attached to
it (Fig. 1: “wfIn”, “wfOut”). The Activity also contains at
least one ActivityPartition. ActivityPartitions are usually
used to group some elements in an activity diagram. In our
case an ActivityPartition represents a legacy application that
will be invoked during the execution of the workflow (Fig. 1:
“AppX”).

To invoke an application, CallOperationActions are used
and modeled (Fig. 1: “OpX”). CallOperationActions are
specialized Actions, which have a reference to an Operation.
As a minor restriction, it is not possible to invoke more than
one application within one invocation. Therefore, each
CallOperationAction must be contained in exactly one
ActivityPartition. However, since one application can be
invoked in many ways to retrieve different data sets, an
ActivityPartition can contain several different
CallOperationActions.

The activity diagram is refined by specifying the type of
data sent to or retrieved from the invoked applications. The
type of data sent to an application by one invocation is
modeled by adding InputPins and/or ValuePins to the
CallOperationAction (Fig. 1: “xIn”). In contrast, OutputPins
represent the data returned from an application (Fig. 1:
“xOut”). According to the UML meta model [1], a Pin is

derived from the TypedElement and the MultiplicityElement
meta class by Generalization. The former enables the user to
type a Pin with a PrimitiveType (such as String, Integer, etc.)
or one of the data objects modeled earlier as a Class. The
later allows the collection of complex data structures in one
invocation. The same applies for the
ActivityParameterNodes.

To represent the data flow between the invocations, we
add ObjectFlows between InputPins and OutputPins. The
ObjectFlows also specify in which order the invocations
must be executed. Additionally, if a typed InputPin does not
have a matching incoming ObjectFlow, the required data has
to be collected by an additional invocation. In such a case,
we need to model new CallOperationActions, which return
the required data and provide an OutputPin for that. Of
course, the appropriate application which holds the data must
be known in advance. Thus the application has to be added
as an ActivityPartition, if not present yet.

The model containing the Activity formalizes the
workflow and the legacy applications to be invoked. Due to
the ObjectFlows it is further specified how data is processed
in the workflow and in which order the invocations occur.

C. Transformation to a Service Model
To generate standardized Web-based interface

descriptions and data types, the next step is to transform the
model described in the previous chapter to a service model
[6], which, among other details, specifies the interfaces for
each legacy application and the study progress workflow
itself.

The transformation rules are formalized in the
transformation language “Queries, Views, Transformation”
(QVT) [11]. The transformation rules are described by
mapping the meta elements of the source meta model to the
target meta model. Since the source and target meta model is
the UML Superstructure [1] the transformation itself is
independent from a concrete platform or technology and thus
can be reused for other integration projects of the same kind.

The transformation uses the created Activity and the
containing model elements as the source model and
generates a target model according to a set of transformation
rules. Since each ActivityPartition represents an application,
which will be invoked during the execution of the workflow,
Each ActivityPartition is transformed into an Interface
(stereotyped as “ServiceInterface”) and a Component
(stereotyped as “ServiceComponent”) with a Realization
relationship between (c.f. Fig. 1: Target model,
“AppXService” and “AppX”). Each CallOperationAction
contained in an ActivityPartition results in an Operation of
the created Interface (Fig. 1: “+opX()”).

Finally, InputPins and OutputPins of the
CallOperationActions are converted into Parameters of the
Operation (Fig. 1: “wfIn” and “wfOut”). The direction
property of each parameter is set to “in” if it is an InputPin
and no corresponding output pin of the same type and name
is attached to the same CallOperationAction. An OutputPin
results in the direction “out”. If a CallOperationAction has
an InputPin and an OutputPin with the same name, the same

type and the same multiplicity, the direction property of the
Parameter is set to “inout” and the OutputPin is ignored

In order to invoke the workflow itself an additional
Interface and Component are generated from the Activity
(Fig. 1: “WfService” and “Wf”). The Interface contains
exactly one Operation named “execute<ActivityName>”
(Fig. 1: “+executeWf()”). The Parameters for this Operation
are generated according to the ActivityParameterPins
attached to the Activity (Fig. 1: “wfIn” and “wfOut”). In
total, n + 1 Interfaces are generated, whereby n correlates to
the number of invoked applications (or ActivityPartitions).
Finally, the generated Component has Uses relationship to all
other Interfaces generated from the ActivityPartitions.

Figure 1. Transformation to the Service Model

It is not required to transform the data types modeled as
Classes. Still, the data types are needed in the target model.
Therefore the Classes from the source model, which
represent the data types can either be imported in the target
model or copied to the target model. The same applies for the
Activity and the containing Actions. The property “operation”
of the CallOperationActions can now be associated with the
generated Operations of the Interfaces.

D. Transformation into Web Service Interface
Descriptions
As the final modeling step, we transform the service

model into concrete artifacts that use Web service
technologies, namely WSDL [2] and XML Schema [3]. Each
UML Interface is transformed into a WSDL document and
the UML Classes are mapped to an XML schema [3]. The
transformation rules are mainly straightforward. Each
Service Interface is transformed into an abstract part of a
WSDL file with exactly one port type. The port type contains
the same number of operations as the UML Interface
specified. The generation of the messages for the input and
output of the Web service depends on the WSDL style. Since
it is most common and recommended by WS-I [12], we use
the style “document/literal-wrapped” [13]. For this style,
each message acting as input or output for a Web service
contains exactly one part, even if multiple UML Parameters
are specified as input or output. To distinguish between the
Parameters, XML Schema is used to build an RPC-like XML
structure, using the operation name as the top XML element.
This XML element contains a sequence of child elements,
which represent the names and types of the parameters.

The data types specified as UML Classes are transformed
to one XML Schema file [3], containing all needed data
types as complex types. The schema file is imported by
every WSDL file generated to have a common set of XML
data types for different Web services.

To also generate the concrete part of the WSDL file, the
proposed service model can be extended by using UML
Components and attached Ports, as in [6, 9]. A Port acts as
WSDL bindings and refers to the generated Service
Interfaces as provided interfaces or if needed by composite
components as required interfaces.

E. Implementing the Web services
To finalize the integration, the required Web services

have to be implemented. The generated WSDL and XML
Schema files are used to create skeletons for the adapter
logic implementation of the web service. For this purpose,
existing approaches are applied that are part of several
development tools (like WSDL2Java from the Apache Axis2
framework [14]).

The final workflow is implemented in the Business
Process Execution Language (BPEL) [15] and is provided as
a Web service. The BPEL code can be generated from the
UML activity diagram. This issue is already handled in some
works [16, 17]. For the sake of simplicity, we omitted this
part in the paper but will present it in a future work.

IV. CASE STUDY “STUDY PROGRESS”
The KIT offers its students the KIT-portal [18], where

each student can access his/her personal data and perform
actions (e.g., to register for an examination) in a simple and
intuitive way. In this paper, we apply our model-driven
software development process presented in the previous
chapter to the development of a visualization of a student’s
progress in his/her studies for the KIT-portal.

The KIT-portal integrates several existing applications in
a service-oriented manner using Web technologies and Web
standards. At the KIT, several applications are available,
each storing and providing individual data for students.
However, none of the applications provides interoperable
interfaces, hence preventing an easy and straightforward
service-oriented integration. An important step towards
service-orientation is the development of standardized and
technology-neutral interfaces for accessing and manipulating
the data provided by existing legacy applications [8]. These
interfaces and the corresponding adapter logic have to be
developed to allow the integration of existing applications.

A. Analysing the Requirements for the “Study Progess”
One feature of the KIT-portal to be developed is meant to

facilitate a student’s overview of his/her passed, failed or
outstanding examinations in a graphical and easily
understandable manner. Hence, several GUI sketches and
prototypes were created prior to starting the development
process, to get the look-and-feel for an adequate
visualization form of the study progress. A modified version
of a tree map provided the most promising results. It
visualizes all the learning modules of a study course by
rectangles using an equal width, but different height,

depending on the amount of credit points (c.f. European
Credit Transfer System, ECTS) of the module. The same
applies for the examinations allocated to a module. In
addition, each examination is color-coded depending on the
current state or result with regard to the student.

Having defined the requirements, we extract the needed
data objects for the study progress tree map, such as
examination results or personal information about the
student. These are persisted in two legacy systems: The
study system stores the degree programs and its structures,
whereas the examination system holds the data for the
offered examinations and the examination results for each
student. We create a new UML model and model the data
objects as Classes. The data types are derived from the
database schema used by the systems. We also model the
data structure which is needed to generate the study progress
tree map.

B. Designing the Workflow “Study Progress”
Next we design the workflow bottom-up. The workflow

for visualizing the study progress is represented by a UML
Activity “StudyProgress” (c.f. Figure 2). To specify the data
types the workflow is called with respectively returns, the
Activity has two ActivityParameterNodes attached to it. The
KIT-portal invokes the study progress workflow by passing
the login name from the KIT-portal (student’s university e-
mail address) as initial input data (ActivityParameterNode
“loginEmail”) of type string. The workflow completes by
returning the output type of the workflow is the tree map
data type (ActivityParameterNode “studyProgress”). The
study system and the examination system are modeled as
ActivityPartitions (“Study” and “Examination”). The
invocation to one of the systems is modeled as a
CallOperationAction in the corresponding ActivityPartition
and in addition the type of data transferred to or from a
system on each invocation is added as Pins.

For example in order to receive the student’s base data
from the study system we model the CallOperationAction
“GetStudentBaseData” in the ActivtyPartition “Study” and
add the OutputPin “student” of the type “Student” (the
classes modeled before). The call to the study system
requires the matriculation number and the current term, so
we model those by adding the two InputPins
“matricNumber” and “term”. Since the portal system only
knows the student’s university e-mail address, which has to
be entered during the KIT-portal login, we add an
ActivityPartition for the accounting system and model the
CallOperationAction “GetMatricNumber” inside. It accesses
the accounting system, maps the student’s email address to
his/her matriculation number and returns the number
(OutputPin “matricNumber”). The current term can be
retrieved from the examination system. Thus, we add the
CallOperationAction “GetCurrentTerm” in the
ActivtyPartition “Examination” with only one OutputPin
“term” containing the current term as an integer value.

To represent the data flow between the invocations, we
add ObjectFlows between InputPins and OutputPins that
have the same type. The ObjectFlows specify in which order
the invocations occur.

Figure 2 shows the final activity diagram labeled as
“Workflow Model” in the upper part. We have formalized
which applications are invoked and how the data is
processed.

C. Transformation to a Service Model
Taking the activity diagram as a source model, we use a

model-to-model transformation to generate service
interfaces. The transformation generates a service interface
for each invoked application. In order to invoke the
workflow itself from the KIT-portal, another service
interface “StudyProgressService” that contains the Operation
“executeStudyProgess” is generated. The Parameters for this
Operation are generated according to the
ActivityParameterPins.

The middle part of Figure 2 shows the resulting
Interfaces for each ActivityPartition and the Activity itself.
The grey dashed lines show some exemplary transformations
from the activity diagram model elements to model elements
of the Service Model. We omitted the generated Components
and most stereotypes in Figure 2 as specified in [6].

D. Transformation into WSDL and XML Schema
On the basis of the service interfaces and the data type

classes a model-to-text transformation creates four WSDL
documents [2] (one for each service interface) and one XML
Schema document [3] (“StudyProgressTypes.xsd”). The
available operations of the port types in the WSDL
documents match the operations of the service interface. To
facilitate the reusability of the XML Schema definitions the
StudyProgressTypes.xsd file is imported into the “types”
section of each WSDL document.

Figure 2 illustrates the generated artifacts and the import
of the central XML Schema definition at the bottom. Part of
the WSDL document for the StudyService is also shown in
detail.

E. Implementing the Web service adapters
Finally, the generated WSDL documents are used to

create skeletons. We implement the adapter logic of the
required Web services. The study progress process itself is
implemented in the Business Process Execution Language
(BPEL) [15] according to the UML Activity. We use an XSL
transformation to generate XHTML from the tree map data
structure defined before. Figure 3 gives the result of the
engineered solution, showing a late prototype of the study
process.

V. CONCLUSION AND OUTLOOK
In this paper, we outlined how a service-oriented

integration of existing distributed legacy applications can be
realized through our model-driven development approach.
Our approach supports the developers in creating an
appropriate integration process. Existing legacy applications
and their data types in use are identified. Due to the bottom-
up nature of our development approach, unnecessary data
transformation can be avoided and functionality that can be
executed in parallel can be identified. Afterwards the
integration workflow, which is modeled using UML activity

diagrams, is automatically transformed into a technology-
independent service model. This service model can be
further refined and transformed into Web service interfaces
and XML Schema definitions. Thus, only functionalities that
are required for the solution are exposed as Web services.

<<artifact>>
ExaminationService.wsdl

Code (WSDL, XML Schema)

<<artifact>>
AccountService.wsdl

<<artifact>>
StudyService.wsdl

<<artifact>>
StudyProgessService.wsdl

<<artifact>>
StudyProgressTypes.xsd

<<import>>

<<Service Interface>>
ExaminationService

Study

GetStudentBaseData

Examination

GetCurrentTerm

Workflow Model

StudyProgress
loginEmail:String[1]

term:Integer[1]

GetExaminationResults

studyProgress:TreeMap[1]

+getCurrentTerm() term:String[1]
+getExaminationResults(student:Student[1], term:Integer[1]) examResults:ExamResult[0..*]

+getMatricNumber(loginEmail:String[1]) matricNumer:String[1]

GetCourseCatalog examResult:ExamResult[0..*]

Account

GetMatricNumber

matricNumber:String[1]

student:Student[1]

catalog:CourseCatalog[1]

+getStudentBaseData(matricNumber:String[1], term:Integer[1]) student:Student[1]
+getCourseCatalog(student:Student[1]) catalog:CourseCatalog[1]

Service Model

+executeStudyProgress(loginEmail:String[1]) studyProgress:TreeMap[1]

<<Service Interface>>
StudyService

<<Service Interface>>
AccountService

<<Service Interface>>
StudyProgressService

Figure 2. Model-driven development process of the “study progress”

The application of the standardized modeling language
UML and of Web services, which allow an integration in a
standardized manner, allows the usage of wide-spread
modeling and development tools. The model-driven
development approach targets a high level of formalization
and therefore supports automatic transformations of models
into more concrete models or code, which helps to avoid
misunderstandings and reduces errors during the
development process.

We exemplified our approach by a scenario at the
Karlsruhe Institute of Technology (KIT). Here, our approach
was applied to realize a visualized study progress that
requires existing distributed legacy application being
integrated.

Due to the successful realization of the study progress at
the KIT, we plan to establish this development approach for
future works as an integrated course catalog and a library
that require the integration of various distributed legacy
applications. Additionally, we plan to consider further design
aspects when creating the Web services to create a reusable
set of Web services with appropriate granularity.

REFERENCES
[1] Object Management Group (OMG): Unified Modeling Language

(UML), Superstructure Version 2.2. http://www.omg.org/cgi-
bin/doc?formal/09-02-02

[2] World Wide Web Consortium (W3C): Web Services Description
Language (WSDL) Version 2.0 Part 1: Core Language.
http://www.w3.org/TR/wsdl20/

[3] World Wide Web Consortium (W3C): XML Schema Definition
Language (XSD) 1.1 Part 1: Structures.
http://www.w3.org/TR/xmlschema11-1/

[4] Meijler T.D., Kruithof G., Beest N.: Top Down Versus Bottom Up in
Service-Oriented Integration: An MDA-Based Solution for
Minimizing Technology Coupling, LNCS Volume 4294/2006.

[5] Marcos E., Castro V., Vela B.: Representing Web Services with
UML: A Case Study. 1st International Conference on Service-
Oriented Computing (ICSOC), Trento, Italy, December 2003.

[6] Emig C., Krutz K., Link S., Momm C, Abeck S..: Model-Driven
Development of SOA Services, Cooperation & Management,
Universität Karlsruhe (TH), Internal Research Report, 2008.

[7] Gronmo R., Skogan D., Solheim I., Oldevik J.: Model-driven Web
Service Development. International Journal of Web Services
Research, Volume 1, Number 4.

[8] Harikumar A., Lee R, Yang H., Kim H., Kang B.: A Model for
Application Integration using Web Services, Proceedings of the
Fourth Annual ACIS International Conference on Computer and
Information Science, July 2005.

[9] Johnston S.: UML 2.0 Profile for Software Services, IBM
developerWorks
http://www.ibm.com/developerworks/rational/library/05/419_soa/,
April 2005.

[10] Hay D.: Requirement Analysis – From Business Views to
Architecture. Prentice Hall, 2003.

[11] Object Management Group (OMG): Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification Version 1.0.
http://www.omg.org/spec/QVT/1.0

[12] Web Services Interoperability Organization: Basic Profile Version
1.2. http://www.ws-i.org/Profiles/BasicProfile-1_2(WGAD).html

[13] Butek R.: Which style of WSDL should I Use, IBM developerWorks,
2003. http://www.ibm.com/developerworks/webservices/library/ws-
whichwsdl/

[14] The Apache Software Foundation: Code Generator Wizard - eclipse
Plug-in, http://ws.apache.org/axis2/tools/1_0/eclipse/wsdl2java-
plugin.html

[15] Organization for the Advancement of Structured Information
Standards (OASIS): Web Services Business Process Execution
Language Version 2.0. http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

[16] Mantell K.: From UML to BPEL. IBM developerWorks, 2005.
https://www.ibm.com/developerworks/library/ws-uml2bpel/

[17] Skogan D., Groemno R., Solheim I.: Web service compositions in
UML. Proceedings of Eudth International Enterprise Distributed
Object Computing Conference, September 2004.

[18] Karlsruhe Institute of Technology (KIT): The KIT study portal,
http://studium.kit.edu

Figure 3. Screenshot of the “study progress” in a nearly final stage

